Polymorphism mtDNA cytochrome b gene of Local Cattle in Indonesia

T.Hartatik*a, W.B.P. Putraab, S.D.Volkandiara and Sumadia

a Laboratory of Animal Breeding, Faculty of Animal Science, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
b Department of Animal Science, Faculty of Agriculture Sciences, Muhammadiyah University of Gorontalo, Gorontalo 96181, Indonesia

Abstract

The aim of this study was to evaluate of genetic diversity of local cattle in Indonesia. We analyzed the polymorphism of mtDNA cytochrome b (cytb) gene using Polymerase Chain Reaction-Restriction Fragment Length Polymorphism (PCR-RFLP) method. Seventy-three Indonesia local cattle were used in the study that consisted of Madura cattle from Madura island (n = 15), Madura cattle from Sapudi island (n = 23), Limousin x Madura from Madura island (n = 5), Bali cattle from Kupang (n = 12), Aceh cattle from Aceh (n = 5), Pesisir cattle (n = 4), Bali cattle from West Sumatera (n = 1), and Java cattle from Pacitan (n = 8). The 464-bp fragment of cytochrome b (cyt b) gene was amplified using primers: forward primer of L14735 and reverse primer of H15149. The PCR product was digested using Hinfl and TaqI restriction enzyme to identify the polymorphism of mtDNA cytochrome b (cytb) gene. This result showed that there was two haplotypes (A and B). Aceh and Pesisir cattle have 100% haplotype B meanwhile Bali cattle (from Kupang and West Sumatera) and Limura cattle have 100% haplotype A. Whereas, Madura cattle from Madura and Sapudi island and Java cattle have two different haplotypes (A and B). There was mtDNA cytochrome b polymorphism of local cattle in Indonesia based on PCR-RFLP analysis method. Since the genetic variation in local cattle showed the differences in the specific area, it is necessary to control the cattle population based on the species.

© 2013 The Authors. Published by Elsevier B.V.
Selection and peer-review under responsibility of the SustaiN conference committee and supported by Kyoto University; (RISH), (OPIR), (GCOE-ARS) and (GSS) as co-hosts.

Keywords: Polymorphism, genetic variation, cytochrome b gene, local cattle, Indonesia
1. Introduction

Domestic cattle in East and Southeast Asia are believed to have originated from three ancestral groups, namely, European cattle (Bos taurus), Zebu cattle (Bos indicus) and Bali cattle (Bos javanicus, the descendant of Bos banteng) [1]. Indonesia has several domestic cattle breeds such as Madura cattle, Bali cattle, Aceh cattle, Pesisir cattle, Java cattle, etc that spread in several islands. Mitochondrial DNA analysis can be used for genetic diversity on population. Mitochondrial DNA (mtDNA) is maternally inherited and changes in the nucleotide sequence occur faster than DNA [2] so mtDNA is ideally suited as a tool for studying population genetics [3]. Mitochondrial DNA (mtDNA) is a useful genetic marker for both intra- and interspecies studies [4,1]. Several studies on mtDNA RFLP of cattle have been reported. According to [1], there are three major groups of domestic cattle in East and Southeast Asia: European cattle, Zebu cattle and Bali cattle. Each of the three groups has mtDNA with a specific haplotype. Ancestral populations of Asian domestic cattle may have diverged into two lineages – Bali and European plus Zebu. Five haplotypes were defined by mtDNA restriction fragment length polymorphism (RFLP) in 11 indigenous cattle breeds and one cultivated breed in South China, in which haplotype I, II, and III were identical to the zebu, taurine and yak (Bos grunniens), respectively [5]. Therefore, mtDNA RFLP is a useful system for studying genetic variation in local cattle of Indonesia. The objective of the present study was to evaluate genetic diversity of local cattle in Indonesia.

2. Materials and Methods

2.1 Samples

Seventy-three Indonesia local cattle were used in the study that consisted of Bali cattle from Kupang (n = 12), Aceh cattle from Aceh (n = 5), Pesisir cattle (n = 4), Bali cattle from West Sumatera (n = 1), and Java cattle from Pacitan (n = 8). In this study used Madura cattle from Madura island (n = 15), Madura cattle from Sapudi island (n = 38), Limousin x Madura (Limura) cattle from Madura island (n = 5) [6] as a comparison. Blood samples were collected from all animals by jugular vein that was saved in tubes containing K3EDTA and stored at -20°C until DNA extraction.

2.2 DNA extraction

Genomic DNA was isolated from whole blood by using standard SDS/Proteinase K method according to [7]. A 200 μl of whole blood was moved to a 1.5 ml tube and added buffer A 800 μl then centrifuge 6000 rpm for 5 minute. Carefully discard upper liquid, then add buffer A 300 μl and repeat again centrifuge 6000 rpm for 5 minute. Carefully discard upper liquid, add buffer B 270 μl and buffer C 30 μl. Incubate for overnight at 50 °C in multi heater. Add 71 μl of saturated 5 M NaCl and strongly shake 15 sec. Centrifuge at 6000 rpm for 10 menit take out and place the upper liquid to new tube. Precipitate the DNA using 2 volume absolute EtOH at the room temperature. Centrifuge at 12,000 rpm for 10 menit then discard the upper liquid. Wash the DNA using 70% EtOH and centrifuge at 12,000 rpm for 5 minute. Discard upper liquid and drying at room temperature and dissolved in TE buffer or steril aquabidest 100 μl. The extracted DNA samples were stored at -20 °C and used later as a substrate for PCR reaction.

2.3 Polymerase Chain Reaction (PCR)

The 464-bp fragment of cytochrome b (cyt b) gene was amplified using primers: forward primer of L14735 (5’-AAA AAC CAC CGT TGT TAT TCA ACT-3’) and reverse primer of H15149 (5’-GCC CCT CAG AAT GAT ATT TGT CCT CA-3’) [8]. DNA was amplified in a total volume of 20 μl containing 1 μl genomic DNA (10-100 ng), 1 μl each primers, 10 μl PCR KIT (KAPPA2G™ Fast, KAPABIOSYSTEMS, USA) and 7 μl aquabidest steril. PCR conditions were 2 min at 94°C, 36 sec at 95°C, 73 sec at 51°C, 84 sec at 72°C, 35 cycles and 3 min at 72°C [9]. The PCR was carried out in Primus-25 Advanced (Germany) Thermal Cycler. The PCR products were visualized on 1% agarose gel buffered with 1X Tris-Boric-EDTA buffer (1XTBE), stained with ethidium bromide and visualized under UV light.

2.4 Restriction Fragment Length Polymorphism (RFLP) and haplotype

The PCR-amplified DNA fragment of the cytochrome b was digested using Hinfl and TaqI restriction enzyme to identify of genetic pattern. Total volume of digestion was 20 μl containing 10 μl PCR product, 0.3 μl
HinfI (Fermentas) or TaqI (Fermentas) enzyme (1U), 2 µl Tango buffer and 7.7 µl aquabidest steril. The PCR product was digested at 37°C for three hours by HinfI enzyme and at 65°C for two hours by TaqI enzyme. The digestion products were separated on 2.5% agarose gels in 1XTBE buffer and run with 50 V for an hour for separation of the DNA fragments. The bands were stained with ethidium bromide to visualization by UV light. The size of the DNA fragments were compared with DNA marker φ X174 DNA/BsuRI (HaeIII) (Fermentas).

2.5 Sequencing analysis

Two samples represent the haplotype were sequenced in order to understand the single nucleotide polymorphisms (SNPs). Total volume 30µl of PCR product from each sample was send to 1st Base Genetika Science for further sequencing. Then the sequence results were analyzed using Bioedit 7.7 to determine the restriction mapping and SNPs.

3. Results and Discussion

This study showed that there was two haplotypes (A and B). Using HinfI enzyme as a restriction enzyme, haplotype A showed three bands with the DNA fragment size 198, 149, and 117 bp, where the haplotype B showed two bands with DNA fragment size 305 and 159 bp (Fig.1). In the other site, by using TaqI restriction enzyme, haplotype A showed two bands with the DNA fragment size 416 and 48 bp, but haplotype B showed three bands with the DNA fragment size 225, 191 and 48 bp (Fig.2). Based on Table 1, Aceh and Pesisir cattle have 100% haplotype B meanwhile Bali cattle (from Kupang and West Sumatera) and Limura cattle have 100% haplotype A. Whereas, Madura cattle from Madura and Sapudi island and Java cattle have two different haplotypes (A and B).

![Figure 1. Restriction pattern of HinfI enzyme. M: Marker φ X174 DNA/BsuRI (HaeIII), line 1,2,3,5,6 : Haplotype A and line 4: Haplotype B.](image1)

![Figure 2. Restriction pattern of TaqI enzyme. M: Marker φ X174 DNA/BsuRI (HaeIII), line 1,2,3,5,6 : Haplotype A and line 4: Haplotype B.](image2)

The result indicated that Aceh and Pesisir cattle have the same maternal lineage. According to the previous research by Prado et.al [10], Aceh and Pesisir cattle have mitochondrial DNA of zebu. So, Aceh and Pesisir cattle with haplotype B was suspected to related to Bos indicus meanwhile, Bali cattle, Java cattle and Limura cattle with haplotype A was suspected to maternally related to Banteng. Limura cattle were established from the crossing of Madura cattle and Limousin bull by artificial insemination. DNA analysis for Madura cattle from Madura and Sapudi island and Java cattle from Pacitan have two different haplotype (A and B) but haplotype A higher than haplotype B (Table 1). It showed that Madura cattle and Java cattle related mostly to Bos banteng. Limura cattle only show the one haplotype A might be due to the size of sample number. According to the previous research by Prado et.al [10] that DNA analysis of Madura cattle showed that a combination of a zebu paternal lineage with a mixed zebu-banteng maternal origin, so this result give more evidence that Madura cattle has mixed blood from zebu and banteng. Based on Nei genetic distances in a Neighbour Network, Indonesian Aceh, Pesisir, and Filial Ongole are close to the Indian zebu breeds, but they are intermediate between Indian zebu and Bali cattle. Madura and Galekan cattle, several of which carry banteng mitochondria, are more distant from the Indian zebu and closer to Bali cattle. The previous research, the banteng mitochondrial type was found in Bali cattle [10,11].
Table 1. Haplotype frequencies on several breeds

<table>
<thead>
<tr>
<th>Breed</th>
<th>Location</th>
<th>n</th>
<th>Haplotypes</th>
<th>Haplotypes (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Madura cattle</td>
<td>Madura island</td>
<td>15</td>
<td>13</td>
<td>86.67</td>
</tr>
<tr>
<td>Madura cattle</td>
<td>Sapudi island</td>
<td>23</td>
<td>16</td>
<td>71.23</td>
</tr>
<tr>
<td>Limura cattle</td>
<td>Madura island</td>
<td>5</td>
<td>5</td>
<td>100</td>
</tr>
<tr>
<td>Bali cattle</td>
<td>Kupang</td>
<td>12</td>
<td>12</td>
<td>69.57</td>
</tr>
<tr>
<td>Bali</td>
<td>West Sumatera</td>
<td>1</td>
<td>1</td>
<td>100</td>
</tr>
<tr>
<td>Aceh cattle</td>
<td>Aceh</td>
<td>5</td>
<td>5</td>
<td>69.57</td>
</tr>
<tr>
<td>Pesisir cattle</td>
<td>West Sumatera</td>
<td>4</td>
<td>4</td>
<td>37.5</td>
</tr>
<tr>
<td>Java cattle</td>
<td>Pacitan</td>
<td>8</td>
<td>5</td>
<td>62.5</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>73</td>
<td>52</td>
<td>71.23</td>
</tr>
</tbody>
</table>

Table 2. Restriction mapping of individual haplotype A dan B.

<table>
<thead>
<tr>
<th>Haplotype</th>
<th>Enzyme</th>
<th>Recognition sequence</th>
<th>Frequency</th>
<th>Positions</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>HinfI</td>
<td>G’AnT_C</td>
<td>2</td>
<td>120, 237</td>
</tr>
<tr>
<td></td>
<td>TaqI</td>
<td>T’CG_A</td>
<td>2</td>
<td>20, 63</td>
</tr>
<tr>
<td>B</td>
<td>HinfI</td>
<td>G’AnT_C</td>
<td>1</td>
<td>130</td>
</tr>
<tr>
<td></td>
<td>TaqI</td>
<td>T’CG_A</td>
<td>2</td>
<td>20, 244</td>
</tr>
</tbody>
</table>

Haplotype A

Hinf I at position 120

Hinf I at position 237

Haplotype B

Hinf I at position 130

Alignment A/B

Figure 3. Restriction mapping of HinfI (G’ANT_C)
Restriction mapping of individual haplotype A and haplotype B (Table 2) show the differences in both position of restriction site and the frequency of cutting site. This data was consistent with the Fig.1 and Fig. 2 as a result of PCR-RFLP. The PCR-RFLP method is very simple and easy. Among the positions of restriction enzymes (4 positions in haplotype A and 3 positions in haplotype B), only one site restriction of TaqI has the same position of restriction site. Therefore we found three SNPs in HinfI site restriction and two SNPs in TaqI site restriction. Total number SNP base on restriction site is five SNPs. The five SNPs based on restriction site position were found independently at different location. Three SNPs in HinfI site restriction show the specific sequence recognition of haplotype A (G’AAT_C) and that of haplotype B (G’ATT_C) as describe at Fig.3. According to PCR-RFLP method we recognized three SNPs with two different sequences. However alignment sequencing analysis method found the five SNPs from 118-141 nucleotides and two SNPs from 229-252 nucleotides. These SNPs are useful as molecular genetic markers.

Conclusion

There was mt-DNA cytochrome b polymorphism of local cattle in Indonesia based on PCR-RFLP analysis that indicate two haplotypes (A and B). Since the genetic variation in local cattle showed the differences in the specific area, it is necessary to control the cattle population based on the species. By using molecular marker HinfI and TaqI restriction enzymes the differentiation of specific species can be done easier and quicker. Thus sustainability of genetic resources in local cattle can be maintained for the future prosperity.

Acknowledgment

This research was partly supported by Post Graduate Grant from Faculty of Animal Science Universitas Gadjah Mada Academic Year 2013/2014. Thank you to Dino Eka Putra, and Arnold C.H. Tabun for their contribution in blood sample collection and DNA extraction of Pesisir cattle and Bali cattle. We also would like to thank to all staff at the Breeding Station of Aceh cattle, staff at Livestock Bureau in Madura, Kupang, Padang, and Pacitan for the nice collaboration and their helping in sample collection.

Reference


