PROCEEDINGS

The 4th ASEAN Civil Engineering Conference

Editors
Istiarto
Henricus Priyosulistyo
Budi Santoso Wignyosukarto
Sigit Priyanto

Organized by:
Department of Civil and Environmental Engineering, Universitas Gadjah Mada (CEE-UGM)
ASEAN University Network/Southeast Asia Engineering Education Development Network (AUN/SEED-Net)

Supported by:
Japan International Cooperation Agency (JICA)

November 22-23, 2011
Yogyakarta, Indonesia
The 4th ASEAN Civil Engineering Conference

Organized by: AUN/SEED-Net

Supported by: JICA

Editors
Istiarto
Henricus Priyosulistyow
Budi Santoso Wignyosukarto
Sigit Priyanto

Reviewers
Henricus Priyosulistyow
Hary Christady Hardiyatmo
Wanchai Teparaksa
Tanaka Hiroyuki
Sigit Priyanto
Nakatsui Takashi
Sunjoto
Marilou Dalida
Budi Santoso Wignyosukarto
Iman Satyarno
Tcuku Faisal Fathani

Published by:
Department of Civil and Environmental Engineering
Universitas Gadjah Mada, Yogyakarta, INDONESIA
Website: http://tsipil.ugm.ac.id
E-mail: juriiran@tsipil.ugm.ac.id
Tel: +62-274-545673
Fax: +62-274-545676

Copyright © 2011 by Department of Civil and Environmental Engineering, UGM

The texts of the papers in this volume were set individually by the authors or under their supervision. Only minor corrections to the text may have been carried out by the publisher. By submitting the paper in the 4th ASEAN Civil Engineering Conference, the authors agree that they are fully responsible to obtain all the written permission to reproduce figures, tables, and text from copyrighted material. The authors are also fully responsible to give sufficient credit included in the figures, legends or tables. The organizer of the conference, reviewers of the papers, editors, and the publisher of the proceedings are not responsible for any copyright infringements and the damage they may cause.
Committee of the 4th ASEAN Civil Engineering Conference

Scientific Committee

Prof. Henricus PriyosulistyO (chairperson) (UGM/Structural Engineering)
Prof. Sunjoto (UGM/Environmental Engineering)
Prof. Sigit Priyanto (UGM/Transportation Engineering)
Prof. Budi Santoso Wignyosukarto (UGM/Hydraulics Engineering)
Prof. Iman Satyarno (UGM/Structural Engineering)
Assoc. Prof. Hary Christady Hardiyatmo, (UGM/Geotechnical Engineering)
Prof. Dr. Sugiyama Takafumi (JSU-Hokkaido University/Structural Engineering)
Prof. Dr. Nakatsuji Takashi (JSU-Hokkaido University/Transportation Engineering)
Assoc. Prof. Dr. Tanaka Hiroyuki (JSU-Hokkaido University/Geotechnical Engineering)
Assoc. Prof. Dr. Takano Shin-ei (JSU-Hokkaido University/Construction Engineering and Management)
Assoc. Prof. Dr. Wanchai Teparaksa (CU/Geotechnical Engineering)
Asst. Prof. Dr. Anat Ruangrassamee (CU/Structural Engineering)
Dr. Boonchai Sangpetungam (CU/Transportation Engineering)
Asst. Prof. Dr. Vachara Peansupap (CU/Construction Engineering and Management)
Prof. Dr. Guillermo Tabios (UP/Environmental Engineering)
Assoc. Prof. Dr. Maria Antonia Tanchuling (UP/Sanitation Engineering)
Assoc. Prof. Dr. Augustus Rezurreccion (UP/Water Quality Management)
Asst. Prof. Dr. Marilou Dalida (UP/Wastewater Treatment and Management)
Asst. Prof. Dr. Ariel Blanco (UP/Water Quality Modelling and Management)

Organizing Committee

Dr. Istiarto (chairperson)
Dr. Ahmad Rifa’i
Dr. Teuku Faisal Fathani
Dr. Arief Setiawan Budi Nugroho
Dr. Ali Awaludin
Dr. Imam Muthohar
Dr. Aslar Saputra
Dr. Akhmad Aminullah
Arumdyah Widiati, M.Sc.
Intan Supraba, M.Sc.
PREFACE

The Department of Civil and Environmental Engineering, Universitas Gadjah Mada, in collaboration with AUN/SEED-Net, is proudly organizing the 4th ASEAN Civil Engineering Conference (ACEC) and the 4th ASEAN Environmental Engineering Conference (AECC) in Yogyakarta on 22-23 November 2011 under the auspices of JICA. The joint conference provides forum for engineers and researchers in the region to collect and disseminate current issues in technology and researches in the field of civil and environmental engineering. The joint conference is part of a continuing series of regional conferences. Previous conferences were held in Thailand (1st ACEC, 2009) and The Philippines (1st AECC, 2009), Laos (2nd ACEC, 2010) and Indonesia (2nd AECC, 2009), and The Philippines (3rd ACEC and AECC, 2010).

More than eighty papers from twelve countries (Brunei Darussalam, Cambodia, Indonesia, Iran, Japan, Laos, Malaysia, Myanmar, Philippines, Singapore, Thailand, and Vietnam) are presented in this joint conference. The papers are grouped in various topics, namely structural and material engineering, construction engineering and management, transportation engineering, geotechnical engineering, water resources engineering, disaster mitigation, green infrastructure, water quality and management, wastewater treatment, air quality management, climate change model, adaptation and mitigation, eco-hydraulics modeling. The papers are compiled in two volumes. This proceeding is the first volume containing paper topics related to civil engineering to be presented in ACEC, whereas the second volume groups paper topics related to environmental engineering to be presented in AECC.

The organizing committee would like to extend its deepest gratitude to all participants who have contributed their papers and all parties involved throughout the conference without which this conference would not have been a success. The organizing committee wishes all participants a fruitful discussion during the conference and an enjoyable stay in Yogyakarta.

Yogyakarta, 22 November 2011

Dr. Istitarto
Chairperson of the Organizing Committee
TABLE OF CONTENTS

Preface

Keynote Papers

Mt. Merapi Disaster Risk and Thoughts on Its Sustainable Disaster Management
 D. Legono .. 1

Lessons We Have Learned for the Last Decade through the Enactments of the Laws with Severe Punishments for Drivers under Influence of Alcohol
 Takashi Nakatsuyi .. 9

Structural Engineering

Influence of Water Absorption on Properties of AAC and CLC Lightweight Concrete Brick
 Antoni, R. Jos, M. M. Lukito .. 15

Confinement Effects on High-Strength Concrete Columns Subjected Eccentric Loading
 Antonius .. 21

Experimental Study of Mechanical Anchorage for Strengthening Bamboo Reinforced Concrete Beam-Column Joints
 B. Sri Umniati, Sri Murdi Dewi, Agoes Soehardjono M. D. .. 27

An Application of Pulley-Cable Element in Solving Form Finding Problem for Cable-Supported Structures
 Dang Dang Tung, Nguyen Tang Thanh Binh .. 33

Studies and Rehabilitation Works on Sewu Temple World Heritage Site after Earth Quake Disaster of May 27th, 2006
 Djoko Sulistyono .. 41

Properties of Environmentally-friendly Concrete Bricks under Different Curing Regimes
 D. Hardjito, Antoni, A. A. Chandra, A. Pratomo .. 47

The Structural Dynamic Behavior of Building with Asymmetric Plan and Dilatation by Means of Microtremor Analysis (A Case Study on Dental Clinic Building of GMU)
 Halis, Henricus Priyosulistyo .. 53

Application of Finite Element Model Updating in Damage Detection of Offshore Jacket Platforms Using Particle Swarm Optimization
 H. Malekzehatb and A. A. Golafshani .. 61

Development of Sustainable High Performance Grade 100 Concrete Incorporating Rice Husk Ash
 H. B. Mahniud and S. Bahri ... 69

Flexural Strength of CFRP Box Beams with Different Laminate Structures
 H. Sakuraba, T. Matsumoto, T. Hayashikawa .. 77
The Effect of Specific Gravity on Embedding Strength of Glued Laminated Bamboo
I. G. L. B. Eratodi, A. Triwiyono, T. A. Prayitno, A. Awaludin ... 85

The Application of Volcanic Ash and Sand from Merapi Volcano Eruption Debris for Cement Based Building Materials

Starting Approximation for Newton-Raphson Iteration to Calculate the Neutral Axis Position of Glulam Bamboo
I. S. Irawati, Morisco, Bambang Suhendro, F. Mardjono, Ashar Saputra, T. Prayitno .. 99

Composite Column Force Transfer in Special Two-Story X-Braced Frames
Junaedi Utomo .. 107

Shear Analysis of T-section Hollow Core Reinforced Concrete Beams Using Nonlinear Finite Element Method
K. S. Nur, Muslih, D. Sulisty .. 115

Development of Probabilistic Design Approach of Reinforced Concrete Structural Components
Kyaw Zeyer Win .. 123

Flexural Behavior Simulation of Wood Wool Cement Board Wall Panel Using Finite Element Analysis

Shear Strength of HSSC Deep Beams Reinforced with High Strength Steel (HSS) Bars: An Experimental Investigation
Mohammad Mohammadkassani, Mohd Zamin Jumaat, Mohammed Jameel ... 133

Ultimate Strength Simulation of Hollow Reinforced High Strength Concrete Beam Under Pure Torsion
R. Hamid, Y. Khairullah, Chiew S. Ing. .. 139

A Correlation Study on Water Absorption and Compressive Strength of Compressed Stabilized Peat Bricks
R. Hashim and S. Deboucha ... 145

Static and Seismic Load Simulation of Beam to Column Connections in Industrialized Building System
S. A. Osman, N. N. Polinon .. 151

Compressive Strength of Concrete using Recycled Aggregate from Concrete and Masonry Debris
Sholihin As'ad, Endah Safitri ... 157

Structural Damage Detection Using Artificial Neural Networks and Finite Element Models
S. J. S. Hakim and H. Abdul Razak ... 165

Time Dependent Diffusion of Concrete Basing on Accelerated Chloride Migration Test
Tran Van Mien .. 171
Strength, Deformation and Elasticity of Masonry from Local Brick East-Java Indonesia
Wisnumarti, S. M. Dewi, A. Soehardjono ... 177

Hydraulics & Hydrology

Integrated Use of Normalized Difference Vegetation Index and Terrestrial Water Storage Changes for an Improved RS-based Drought Monitoring System
A.M. Cruz and A. Blanco ... 183

Theoretical Approach Equilibrium Beach Profile behind Geotube As A Submerged Coastal Structure
C. Poeton, N. Yuwono, R. Triatmadja, B. Triatmodjo ... 189

Development of a Web Based Paddy Irrigation Productivity Assessment – WEBPIPA for Rice Irrigation Water Supply Management
Deepak T. J., M. S. M. Amin, Rashid Shariff, Rahman Ramli, Venishri P. ... 197

Link between Snow Cover, Land Surface Temperature, and Rainfall Variability in the Upper Mekong
Hang Leakhena, Heng Suthy ... 201

Measurement of Longshore Current at Hydraulic Model Scale
H. Umar, R. S. Pranata, A. S. Pratama, N. Yuwono, R. Triatmadja, Nizam ... 209

Effect of Source-to-sensor Distance into Acoustic Wave Propagation in Reinforced Concrete Beam
N. Muhamad Bunnori ... 215

Developing Laboratory Experiment on Flow in an Erodible Curved Channel
Sumiadi, Istiarto, B.A. Kironoto, D. Legono ... 223

Comparison of Recharge System Formulas from Point of View of Dimension Analysis, Mathematical Logic and Flow Condition
Sunjoto S. ... 227

Water Resources Potency in South West Sumba, East Nusa Tenggara
Trihono Kadir, Fennani Arpan, Dwi Prasetyo ... 235

An Automated Interpretation of Forecast Images for Rainfall Estimation
Tristan M. Basa, Paul Rossener R. Regonia, Samantha F. Richo, Prospero C. Naval Jr. ... 239

Soil Water Index Dynamics for the Identification of Initial Occurrence of Volcanic Deposit Instability
W. Wardoyo D. Legono, R. Jayadi, T. F. Fathani ... 243

Early Warning System for Water Level in Rivers
Y. Nukman, Z. A. Sarmad, M. Z. Harizan ... 251

Data Acquisition System of Air Bubbles in Steep Channel Flow
Y. Sutopo, Istiarto, B. Wignyosukarto, B. Yulistyanto ... 259
Evaluation of the SCS-CN Method Using Data of a Catchment in Yogyakarta Province
Joko Sujono ... 265

Transportation Engineering

Modelling Traffic Accident Occurrence at Purbaleunyi Toll Road – Indonesia using Generalised
Poisson Regression Model
A. Kusumawati and L. A. Rahmat ... 271

Review of Non-motorised Transport (NMT) and Public Transport Activities for Urban Transport
Planning
Bibie Sara Salleh, Riza Atiq Abdullah O. K. Rahmat, Amiruddin Ismail .. 277

Decision at the Beginning of Route Selection for Road Alignment
Deprizon Syamsumur, Amiruddin Ismail, Riza Atiq O. K. Rahmat, Othman Karim, Resdiansyah
Mansyur ... 283

Acoustic Emission (Impact Echo) For Detecting Flaw in Transportation Infrastructure
Mochammad Sigit Darmosudiharjo, M. F. M. Zain ... 289

The Influence Of The Urban Transport System In Java On City Fuel Consumption
Mudjiaistuti Handajani ... 295

Extending the Theory of Planned Behavior – Predicting the use of park-and-ride
Muhamad Nazri Borhan, Amiruddin Ismail, Riza Atiq Abdullah O. K. Rahmat 303

Determination of Important Factors on Sidewalks with Vendor Activities in Bangkok and Jakarta
Nursyamsu Hidayat, Kasem Choocharukul, Kunthiro Kishi .. 309

Identification and Characteristics of Urban Transportation System from Urban Planning Perspective
Omran Kohzadi Seifabad, Amiruddin Ismail, Samira Matinrad ... 317

Application of Artificial Intelligent in Transport Demand Management
Resdiansyah Mansyur, Riza Atiq O. K. Rahmat, Amiruddin Ismail ... 325

A Proposed Method for The Evaluation of The Asphalt Layers Moduli of Flexible Pavement on Low
and Medium Strain Level

Role of Walking in Access to and Egress from Transit Stations
Sony S. Wibowo .. 343

Determination of Location and Design for Urban Railway Station (Case: Yogyakarta – Magelang)
Distiana, S. Priyanto, H. Sutomo, I. Muthohar .. 349

Route Alternative for Yogyakarta’s Railway Development: Design Choice and Possibilities
Safirilah, S. Priyanto, H. Sutomo, I. Muthohar ... 357
Geotechnical Engineering

Characterization and Utilization of Volcanic Ash for Soil Stabilization
A. Rifa’i .. 365

Determination of Potential Liquefaction in Yuan Lin Area, Taiwan
Kasumawardani, R, Satyarno, I., Suryowidodo, K.B., Rifa’i, A., Suhendra, B. 373

Determine the Alteration of Young’s Modulus of Soft Bangkok Clay behind Diaphragm Wall using Triaxial Test
Le Trong Nghia, Wanchai Teparaksa, Toshiyuki Mitachi, Takayuki Kawaguchi 379

Shear Strength Determination under Isotropic Condition of Tailings from Selected Mining Sites in the Philippines
M. Adajar, Y. Lim, E. Uy, J. Uy .. 387

The Application of Pile Foundation System in the Construction of Ayeyawady Bridge (Pakokku)
Nang Su Le’, Mya Thwin, Zaw Moe Lwin ... 395

Lessons Learned From The Land Subsidence Problem at Coastal Area in North Jakarta
Nani Setiawan .. 399

Measurement of Elastic Modulus Subgrade of Flexible Pavement Layers Using FWD and SASW Test Method

Apparent c′-intercept in Safety Factor Design of Slope Stability Analysis
S. Heng, T. Pipatpongsa, H. Ohta, C. Chhouk .. 415

Phnom Penh Subsoil Conditions using Groundwater Modeling System (GMS)
Sached Likitlersuang, Samphors Touch ... 421

Strength Characteristics of Non-salt and Salt-rich Stabilized Dredged Soils
Thanh-Hai Do, Tuan-Anh Tran ... 427

Analysis of Failure of Cement Deep Mixing Wall System at HiepPhuoc Harbour in Ho Chi Minh City
Tuan-Anh Tran, Xuan-Loi Tran .. 433

Investigation into Pile Bearing Capacity Formulas in Vietnamese Pile Design Code in Comparison with PDA and Static Load Tests in South of Vietnam
Dinh Thanh Nguyen, Tuan Anh Tran .. 441

Thixotropic Hardening and Creep Behavior of Very Soft Clays
S. Seng, H. Tanaka ... 453

Construction Management

The Current Status of Safety Management and Factors Influencing Safety Management in The Cambodia Construction Site
J. Noppadon, T. Tanit, L. Bunhav .. 461
J. C. V. Reyes, V. Chovichien ... 469

Institutional Controls in the Views of State Regulators and Licensed Site Professionals
R. Tiyarattanachat, D. J. Watts ... 479
Data Acquisition System of Air Bubbles in Steep Channel Flow

Y. Sutopo
Ph.D. Student at the Department of Civil and Environmental Engineering, Universitas Gadjah Mada, Yogyakarta, Indonesia

Istiarto, B. Wignyosukarto, B. Yulistyanto
Department of Civil and Environmental Engineering, Universitas Gadjah Mada, Yogyakarta, Indonesia.

Abstract: The paper presents data acquisition system of air bubbles in air-water free flow of natural conditions (self-entrainment) in a steep channel. Two parameters are of interest, namely air concentration and air bubble velocity. The steep channel was made of acrylic flume 20×40×1100 centimeters size with bottom slope of 13 degrees. The flow discharge in the channel was 11 liters per second. The data acquisition of air bubbles consists mainly of CCTV camera to capture the air bubbles image and image processor software to define the air concentration and to track the air bubble velocity. Measurement results indicate that air bubbles do not reach channel bed. The air concentration in the mid-depth of the flow is 5%. The air bubbles have not uniformly been present throughout the flow depth. The air entrainment in the flow is thus in the developing region and has not reached fully developed one. The air concentration profile obtained by the measurement can be described by \(C = -0.8566z^2 + 8.7075z + 3.1209 \) with \(R^2 = 0.981 \). The expression is valid to predict values of air concentration in the developing region of 13° channel bottom slope. The instrument, however, has not produced satisfactory measurement on air bubble velocity. A series of experiments is now underway to further study the performance of the data acquisition system.

Keywords: Data acquisition system, air bubbles, steep channel.

1 INTRODUCTION

Two-phase flow is part of a multi-phase flow. Flow of different phases is widely encountered in everyday life and in industrial processes. Examples of two-phase flow can be seen in flow from exhaust, flow of cement and sand in pipe, and flow on chute spillway. Phase flow above steep channel is a phase of water and air. Air phase is typically in the form of air bubbles (Indarto, 1998).

One of important characters in the flow on a chute spillway is incoming air from the atmosphere into the flow and mix with water. This is widely known as self air entrainment. Falvey (1980) defines the self air entrainment as the entry of air from the atmosphere into water bodies. Air entrainment is marked by the present of air bubbles on the flow surface. This is usually seen as white color layer because air bubble reflects light.

Air entrainment as described above can also be referred to as self aeration.

Data acquisition system can be defined as a system that serves to retrieve, process, and present the data. Data acquisition systems typically consists of two sub-systems, namely the hardware sub-system that functions as decision tool to get data from the object to be measured and software sub-system to collect and process data which can then be displayed.

The hardware in the present air bubble measurement apparatus consists mainly of CCTV camera equipped with CCD (Charge-coupled Device) sensor. This device serves to take images of air bubbles. Video camera reads air bubbles in the flow and stores the data as video images ready for image processing.

The software for image data processing provides tools to manipulate video images such that the images give clear picture of the air bubbles in the flow. First step in the image processing is transferring the RGB format of the original images into black-and-white format in 8-bit size images. After some image quality improvements, the air bubbles become identifiable and can be described quantitatively. The information gained from this process is the location and geometry of individual air bubble. The geometry is expressed by the diameter, circumference, and area of individual bubble. Such quantitative information can be used to describe the air bubbles (Ferreira and Rasban, 2010).

Another tool of the software is image tracking. This facility provides tool to interpret bubble images to obtain velocity of the air bubble. This and the geometric information of the air bubble are the main objective of air bubble measurement.

2 METHOD

The measurements of air bubbles were conducted in a rectangular flume whose dimension is 20×40×1100 cm and bottom slope is 13°. A head tank, which was
located 5 m above the floor, and v-notch discharge measuring device were provided to control the flow discharge. The flow discharge was maintained at 11 l/s. A second discharge of 20 l/s was also operated, but the measurement data of this experiment are not discussed in this paper.

The data acquisition device consists of CCTV camera equipped with a CCD sensor. The camera was place on one side of the flume. Two 500 W halogen lamps were placed on the other side of the flume. A screen made of tracing paper and paper colors light green were provided to uniformly spread the lamps light. Control of the measurement was done by computer. Images of air bubbles captured by the camera were then processed by using image data processing to quantify the geometric features and velocity of the air bubbles. Figure 1 depicts the schematic diagram of the data acquisition instruments.

![Schematic Diagram of Data Acquisition](image)

Figure 1. Equipments of the air bubbles data acquisition.

The steps to determine the profile of air bubbles concentration, C, are (1) taking pictures of air bubbles using CCTV camera that is equipped with CCD sensor, (2) saving image of air bubbles using video capture software, ImageJ, (3) converting video images to still images, (4) describing the dimension of air bubbles, (5) defining profile of air bubble concentration, and (7) finding equation describing the air bubbles profile, C as a function of depth, z.

![Procedure Diagram](image)

Figure 2. Procedure for the air bubbles measurement and processing.

The steps to determine the direction and velocity of air bubbles are (1) based on the third step in determining the distribution of air bubbles, selection was made on sequence of images that show identifiable air bubbles, (2) on the first frame, mark air bubble using Trace software, (3) on the second frame, mark the new position of the air bubble, (4) measure the distance and angle of straight line connecting the old and new positions of the air bubble, (5) get the velocity of air bubble as the distance over which the air bubble has traveled divided by the time interval between the successive frames.

The above procedures were applied to air bubbles data taken from trial run. The analysis follows the following steps: (1) measure the position of air bubbles from the channel bed, z, using ImageJ software, (2) measure the diameter and circumference of the air bubble using ImageJ software, (3) calculate the area of air bubbles, (4) calculate air bubble concentration at several depths using ImageJ software, (5) define profile of air bubble concentration, C(z), and (6) calculate the angle and velocity of air bubbles using ImageJ and Trace softwares.
3 RESULTS AND DISCUSSION

3.1 Identification of Air Bubbles

The steps in identifying air bubbles are (1) open the ImageJ software, (2) select a still image of air bubbles that has been stored in the file, (3) convert the RGB images to 8-bit black-and-white format, (4) modify image brightness to get clear image of air bubbles. The results of these steps are air bubbles that can be easily identified.

This section and the ones that follow present the identification and measurement of air bubbles on five consecutive image frames.

![Figure 3. Identification of air bubbles on frame #1.](image)

Identification of air bubbles is limited by the area marked with dashed lines (see Figure 3). The line at the top of the black color is the surface flow. Thick black line at the bottom is the base flow. From the identification, it was obtained that there are 21 air bubbles present inside the marked area. Number 1 and 17 written on Figure 3 show respectively the first and seventeenth air bubbles. The identification reveals that the air bubble diameter varies. Most of the air bubbles do not form a full round.

Figure 3 above is an example of how to identify air bubbles in one image frame. Identification of air bubbles in the other frames was done in the same way.

3.2 Measurement of Air Bubble Geometry

The first step in measuring the air bubble geometry is to convert pixel size to real distance unit (millimeter, for instance). The procedures are: (1) open the ImageJ software, (2) select a still image of air bubble that has been stored in the file, (3) convert the RGB images to 8-bit black-and-white format, (4) change the scale in pixels to scale of real unit (mm), and (5) measure the position of the air bubble with respect to the channel bottom. Figure 4 depicts these steps.

![Figure 4. Measurement of air bubble position and geometry on frame #1 (top figure) and frame #3 (bottom figure).](image)

The procedure of measuring the geometry of air bubbles are (1) select the air bubble on the image, (2) measure the vertical distance of the air bubble from the channel bottom, and (3) measure the geometry of air bubble. Table 1 shows two examples of air bubble geometry identified on Figure 4.

<table>
<thead>
<tr>
<th>No.</th>
<th>Area (mm²)</th>
<th>Perimeter (mm)</th>
<th>Major dia. (mm)</th>
<th>Minor dia. (mm)</th>
<th>Round (mm)</th>
<th>Depth (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.805</td>
<td>4.71</td>
<td>1.52</td>
<td>1.52</td>
<td>1.00</td>
<td>15.84</td>
</tr>
<tr>
<td>2</td>
<td>3.088</td>
<td>6.21</td>
<td>2.08</td>
<td>1.89</td>
<td>0.91</td>
<td>13.13</td>
</tr>
</tbody>
</table>

As presented on Figure 4 and Table 1, the position of the air bubbles #1 shown by the dashed line is 15.84 mm from the channel bottom, major and minor diameters are both 1.52 mm, area is 1.805 mm², perimeter is 4.71 mm. The bubble shape is round.
having round factor of unity. The geometry of the air bubble #2 are: position 13.13 mm, major diameter 2.08 mm, minor diameter 1.89 mm, area 3.088 mm², perimeter 6.21 mm. The bubble shape is not round having round factor of 0.91.

Figure 4 shows two examples of how to measure the geometry and position of the base flow of air bubbles. Measurement of position and geometry of air bubbles from the base flow in the other image frames are carried out with the same manner.

3.3 Measurement of Air Bubble Concentration

Air bubbles concentration is defined as the ratio of air bubble area and the sectional area of the measurement station. The measurement station is located at 8.6 m downstream of the flume inlet section. The flow depth was divided into five equidistant layers. Figure 5 depict the measurement of air bubbles on image frame #4 and #5.

Table 2 summarizes air bubble concentrations obtained from measurement at the five frames. Figure 6 is the plot of the average concentration at those frames.

<table>
<thead>
<tr>
<th>Range of depth (mm)</th>
<th>Air bubble concentration (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>frame #1</td>
</tr>
<tr>
<td>0 – 4.1</td>
<td>0</td>
</tr>
<tr>
<td>4.2 – 8.3</td>
<td>0.63</td>
</tr>
<tr>
<td>8.4 – 12.5</td>
<td>0.56</td>
</tr>
<tr>
<td>12.6 – 16.7</td>
<td>2.35</td>
</tr>
<tr>
<td>16.8 – 20.9</td>
<td>1.55</td>
</tr>
</tbody>
</table>

![Figure 5](image_url)

Figure 5. Measurement of air bubble concentration on frame #4 (top figure) and frame #5 (bottom figure).

Figure 6. Concentration of air bubbles on five successive frames at a position of 8.6 m downstream of the flume inlet.

The measured concentration profile reveals that the air bubbles have not reach the channel bottom. As expected, the maximum concentration is found at the water surface. The vertical distribution of the air bubble concentration is in line with of Chanson (1997). In addition, Falvey (1980) states that the condition of the distribution of air bubbles as depicted by Figure 6 above is still in the developing regions. The fully developed air entrainment has not been attained. Best fit to the data gives the expression of air bubbles concentration profile as $C = -0.8566z^2 + 8.7075z + 3.1209$ with $R^2 = 0.981$. This equation is valid to predict the value of the air bubble concentrations in the measurement section of developing air entrainment.

3.4 Measurement of Air Bubble Velocity

The air bubble velocity is measured by tracking method. Not all image frames allow velocity to be defined. Velocity is defined by air bubbles tracking on two consecutive frames. The frequency of the image capturing is 24 frames per second (fps), which seems to be much less than the air bubble velocity.
Figure 7 shows two consecutive frames where air bubble position can be defined. Table 3 presents the velocity definition from this figure. It was found the velocity is 0.954 m/s to the 8°26'2" direction. The velocity of air bubbles is lower than that of the flow being 4.457 m/s).

<table>
<thead>
<tr>
<th>Position</th>
<th>Depth (mm)</th>
<th>Area (mm²)</th>
<th>Velocity (m/s)</th>
<th>Angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>14.322</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/24 s</td>
<td>39.75</td>
<td>2.557</td>
<td>0.954</td>
<td>8°26'2"</td>
</tr>
</tbody>
</table>

4 CONCLUSION
The experiment has led to the following conclusions.

Air entrainment in the measurement station is in the developing region. The fully developed air entrainment has not attained. The vertical distribution of the air concentration at this section can be expressed by $C = -0.8566x^2 + 8.7075x + 3.1209$. This equation is valid to predict the air bubbles concentration in the developing region in the channel bottom slope of 13°.

The developed data acquisition is reliable for measuring air bubbles in self air entrainment. Some improvements are, nevertheless, required notably in the frequency of the image capturing.

REFERENCES

Department of Civil and Environmental Engineering
Universitas Gadjah Mada
Yogyakarta, Indonesia
website: http://tsipil.ugm.ac.id
e-mail: jurusan@tsipil.ugm.ac.id
tel: +62-274-545675
fax: +62-274-545676

Supported by:
AUN/SEED-Net JICA