MODEL PERENCANAAN PENGEMBANGAN SISTEM DISTRIBUSI BERDASAR KONFIGURASI DAN KONSTRUKSI JARINGAN MENGGUNAKAN ALGORITMA GENETIK

Budi Astuti1, Sasongko Pramono Hadi2, dan Soedjatmiko2
1 Jurusan Teknik Elektro, Universitas Islam Indonesia, Yogyakarta
2 Jurusan Teknik Elektro, Universitas Gadjah Mada, Yogyakarta

ABSTRACT
In order to keep the consumer satisfaction and service reliability a new method namely network reconfiguration and reconstruction will be used in power electrical distribution. This method will reconfigure network distribution by changing switch status for loss minimization and generate construction plan network if operational constraint are violated. This research handles five years load increase and generates a good network expansion plans for the existing network model Kentungan Substation which has 10 feeder; with several constraints such as radial network, voltage and current. For solving the network configuration a Genetic Algorithm was used and the load flow analysis was solved by the use of ETAP Power Station Program. The new candidates chosen by total cost evaluation. There are two networks supplied by Kentungan Substation. By Genetic Algorithm for the first networks, it is shown that the opened switch for minimum losses for Patran, TVRI-2, SMA-4, and AMP are 71.2 kW in 2005, 87.4 kW in 2006, 108.9 kW in 2007, and 119.0 in 2008. For the current compensation in the next five year, the second network must be developed by 8 candidates of transition networks. It is proposed to choose the candidate number 1 for minimum cost of investment.

Key words: genetic algorithm, reconfiguration, generate construction

1. PENDAHULUAN
Akibat meningkatnya pelanggan listrik baru maka perlu adanya perancangan pengembangan jaringan distribusi tahun ke tahun sesuai dengan permintaan pelanggan yang meningkat untuk setiap tahun perencanaan berdasar pertumbuhan beban jaringan. Padahal sistem distribusi harus dioperasikan dengan biaya yang minimum, semua beban yang diinginkan dapat dilayani, drop tegangan pada batasan rating yang dijinkan, kapasitas arus untuk penghantar dengan limit arus penyulang maksimal 300 Ampere, kondisi jaringan harus berbentuk radial dan peralatan-peralatan berada pada batasannya serta dijamin keandalannya[4].

Untuk keperluan di atas dilakukan rekonfigurasi yakni mengatur status saklar-saklar (NO dan NC) untuk mengubah topologi jaringan dalam rangka pengembangan jaringan serta jaminan untuk ketersediaan dan keandalan penyaluran tenaga listrik sesuai dengan kendala yang ditetapkan di atas [9].

Dengan alasan banyaknya variabel dalam penelitian ini yang digambarkan oleh banyaknya ABSW maka penyelesaian masalahnya menggunakan analisis Logika Algoritma Genetik dengan bantuan Software Matlab 6.5. Untuk analisis aliran beban digunakan program ETAP Power Station 4.0. Evaluasi yang lain
dilakukan pada biaya investasi minimum untuk pengembangan konstruksi jaringan.

Manfaat dan tujuan penelitian untuk mengetahui nilai optimal rugi-rugi jaringan dari suatu konfigurasi jaringan berdasar penerapan Algoritma Genetik dan memperoleh sebuah model untuk perencanaan pengembangan jaringan berdasar konfigurasi serta konstruksi jaringan akibat pertambahan beban dengan biaya minimum dengan kualitas pelayanan sebagaimana yang ditetapkan.

2. KAJIAN PUSTAKA

Sistem distribusi harus dioperasikan dengan biaya yang minimum dan menghindari beberapa kendala sehingga semua beban yang diinginkan dapat dilayani [8].

Fungsi kendala yang harus diperhatikan untuk rekonfigurasi jaringan adalah [2]:

a. Struktur Jaringan harus disusun dalam struktur radial $\phi(k) = 0$

b. Tegangan berada pada daerah $\pm 10\%$

Besar tegangan setiap simpul harus berada pada daerah yang diijinkan untuk mempertahankan tingkat kualitas daya

c. Arus suplai tidak boleh melebihi 300 Ampere

Besar arus setiap cabang (penyulang, dan saklar-saklar) tidak melampaui 300 Ampere.

Kendala kendala di atas dihindari dengan cara mengganti penghantar dengan ukuran lebih besar atau perencanaan instalasi dengan penghantar baru atau instalasi dengan saklar sambung baru atau instalasi dengan switch baru pada seksi [9].

Untuk eksekusi algoritma genetika, ditentukan lebih dahulu nilai-nilai berikut,

- ukuran populasi (UkPop), ditetapkan = 20
- banyak generasi (Ngen), ditetapkan = 100
- probabilitas penyilangan (Pc), ditetapkan = 1
- probabilitas mutasi (Pm), ditetapkan = 1%

Langkah-langkah untuk analisis Algoritma Genetik,

- Membangkitkan kromosom sebanyak initialpop sebagai generasi ke-1. Kromosom terdiri dari m subkromosom, dengan $m =$ banyak penyulang.

- Menghitung harga fungsi evaluasi untuk setiap kromosom pada generasi tersebut Bila rugi-rugi daya total sudah diketahui baru bisa dihitung nilai fitness setiap kromosomnya. Kandidat yang bagus untuk fungsi fitness adalah fungsi obyektif dari persoalan yakni minimasi total rugi-rugi, L

$$L = \sum_{i} I_i^2 k_i R_i + \beta \max \left\{ 0, \left(|I_i| - I_{i\ max} \right)^2 \right\}$$ \hspace{1cm} (1)

I_i = arus pada cabang i; R_i = resistansi pada cabang i, β adalah konstanta

Astuti - Model Perencanaan Pengembangan Sistem Distribusi Berdasar Konfigurasi
c. Melakukan seleksi terhadap kromosom berdasar fungsi fitness dengan roda rolet
e. Dilakukan mutasi dengan menganti 0 menjadi 1 terhadap kromosom hasil langkah d. Terbentuklah kromosom generasi berikutnya. Ulangi langkah b

Evaluasi total untuk setiap perencanaan konstruksi dilakukan dengan menjaga gambaran konfigurasi jaringan yang merupakan rencana konstruksi per tahunnya; dan kelanjutan hubungan antara konfigurasi jaringan usulan tiap tahun. Jaringan transisi yang dipilih adalah jaringan transisi dengan total biaya terkecil berdasar biaya-biaya berikut [5].

a. Biaya perencanaan konstruksi tahun 2005 sampai 2009

\[C_i = A_i \times B_i \] (2)

- \(C_i \) : biaya pengembangan konstruksi untuk tahun ke i
- \(A_i \) : unit biaya untuk setiap perencanaan = Rp. 148.500.000,00
- \(B_i \) : jumlah total perencanaan ke i

b. Biaya ekivalen tahunan yang dibangkitkan oleh perencanaan konstruksi dari tahun 2005 sampai tahun 2009, dengan i menunjuk tahun

\[F_i = C_i \times (1 + E)^k \times D_i \] (3)

- \(E \) : nilai inflasi 8% dan penyusutan/depresiasi 2,5% untuk pemasangan peralatan
- \(D_i \) : faktor bobot perencanaan ke i diangsurkan sebagai dasar adalah penarikan feeder terpendek
- \(k \) : tahun perencanaan konstruksi ke i

c. Biaya total konstruksi untuk setiap perubahan jaringan tahun 2005 sampai 2009

\[TCC_j = \sum_{i=1}^{n} F_i \] (4)

- \(TCC_j \) : biaya total konstruksi tahun 2005 sampai 2009 dari transisi jaringan ke j
- \(n \) : angka total untuk perencanaan konstruksi dalam jaringan transisi ke j
- \(H_i \) : unit biaya pembangkitan instalasi berkaitan dengan rugi-rugi tahun ke k d.

d. Biaya total konversi untuk rugi-rugi jaringan setiap transisi jaringan

\[TNL_j = \sum_{k=1}^{m} G_k \] (5)

- \(TNL_j \) : total biaya konversi untuk rugi-rugi jaringan dari transisi jaringan ke j tahun perencanaan terakhir

\[G_k = L_k \times H_k \] (6)

TEKNOIN, Vol. 11, No.2, Juni 2006, 99-108
3. METODOLOGI PENELITIAN
Materi penelitian adalah mencoba konfigurasi ulang jaringan, dengan tahapan:

a. Pembuatan konfigurasi baru oleh adanya kenaikan beban pada tahun ke k diikuti dengan Analisis Aliran Daya untuk mengetahui nilai-nilai arus yang mengalir per cabang menggunakan Program ETAP.

b. Pembuatan listing program untuk analisis minimisasi rugi-rugi daya dengan Algoritma Genetik dengan memasukkan parameter genetik dengan data masukkan yang diperoleh dari hasil analisis program ETAP.

c. Mengevaluasi apakah sudah sesuai dengan tahun yang ditetapkan, bila belum, ulang kembali dengan pembuatan konfigurasi baru berdasar tahun k+1, berakhir pada tahun yang ditetapkan.

d. Menghitung biaya yang dibutuhkan dan menetapkan biaya terendah berdasar berbagai kemungkinan konfigurasi yang dibuat.
Untuk eksekusi algoritma genetika, ditentukan lebih dahulu nilai-nilai berikut,

- ukuran populasi (UkPop), ditetapkan = 20
- banyak generasi (Ngen), ditetapkan = 100
- probabilitas penyilangan (Pc), ditetapkan = 1
- probabilitas mutasi (Pm), ditetapkan = 1%

Evaluasi total untuk setiap perencanaan konstruksi dilakukan dengan menjaga gambaran konfigurasi jaringan yang merupakan rencana konstruksi per tahunnya; dan kelanjutan hubungan antara konfigurasi jaringan usulan tiap tahun.
Jaringan transisi dengan total biaya terkecil adalah jaringan transisi yang optimal berdasar pada biaya perencanaan konstruksi sesungguhnya tahunan, biaya ekivalen per tahun, biaya total konstruksi tahunan untuk setiap perubahan jaringan dihitung dengan biaya konversi untuk rugi-rugi jaringan dan biaya total tahunan untuk jaringan transisi j.

4. HASIL PENELITIAN
Terdapat 3 blok jaringan untuk Jaringan Distribusi dari Gardu Induk Kentungan dengan sepuluh penyulang:

a. Blok 1. untuk jaringan dari KTN 4,5 dan 6
b. Blok 2. untuk jaringan dari KTN 1, 7, 8, dan 10

- Blok 3 untuk KTN 2, 3 dan 9 yang masing-masing terpisah dalam bentuk murni radial.

Untuk blok 1 diperlukan beberapa penyesuaian agar Algoritma Genetik dapat diterapkan, ada 2 model yang akan di analisis seperti pada gambar 1.
Gambar 1. Pembagian Seksi Pada Blok 1 Tahun 2005
(a) Model 1
(b) Model 2
----- Seksi yang terbuka

Untuk model 1 beberapa seksi selalu tertutup sebagai pada gambar 1a) ditetapkan lebar kromosom 10 bit untuk 4 penyulang.
- Penyulang 1 terdiri atas 5 seksi, merupakan subkromosom 1 dengan lebar bit 3.
- Penyulang 2 terdiri atas 3 seksi merupakan subkromosom 2 dengan lebar 2 bit.
- Penyulang 3 terdiri atas 4 seksi merupakan subkromosom 3 dengan lebar 3 bit.
- Penyulang 4 terdiri atas 3 seksi merupakan subkromosom 4 dengan lebar 2 bit.

Untuk pembagian jaringan model 2 (gambar 1b) dibuat agar tidak ada seksi yang selalu tertutup
- Penyulang 1 terdiri atas 9 seksi merupakan subkromosom 1 dengan lebar bit 4.
- Penyulang 2 terdiri atas 6 seksi merupakan subkromosom 2 dengan lebar bit 3.
- Penyulang 3 terdiri atas 3 seksi merupakan subkromosom 3 dengan lebar bit 2.

Hasil analisis Algoritma Genetik model 1 untuk pembukaan ABSW optimal adalah, pada penyulang 1, seksi yang dibuka yakni 4 (Patran); pada penyulang 2, yang dibuka seksi 2 yakni Nandang; pada penyulang 3, dibuka seksi 2 yakni TVRI; pada penyulang 4, dibuka seksi 2 yakni Diponegoro. Rata-rata rugi-rugi sebesar 20,26 kW, dan rugi-rugi daya total dievaluasi kembali dari program ETAP dengan menambahkan besarnya rugi-rugi daya untuk ABSW yang tertutup. Hasil akhir total rugi-rugi = 161, 55 kW. Hasil ini ternyata bukan nilai yang optimal dan berbeda jauh dengan hasil analisis Program ETAP untuk nilai rugi-rugi.

TEKNOIN, Vol. 11, No.2, Juni 2006, 99-108
minimumnya. Dari model 2 diperoleh hasil pemrograman analisis Algoritma Genetik. seksi yang dibuka untuk tahun 2005, 2006 dan 2007 ternyata sama sebagai berikut, pada penyulang 1, ABSW yang dibuka seksi 6 (Patran); pada penyulang 2, ABSW yang dibuka seksi 5 (TVRI2); pada penyulang 3, ABSW yang dibuka seksi 3 (SMA 4).

Gambar 2 Pembagian Seksi Blok II thn 2005 sebelum rekonstruksi.

Nilai rugi-rugi minimal hasil Algoritma Genetik ternyata tidak berbeda jauh dengan hasil dari program ETAP. Dengan demikian model 2 yang dipergunakan.

Pembagian seksi pada tahun 2005 untuk blok II seperti pada gambar 2. Pada tahun 2005 penyulang KTN 8 dilalui arus sebesar 390,65 Ampere, melampaui ketentuan arus maksimum 300 Ampere. Dengan demikian dilakukan 2 model rekonstruksi dengan menarik kabel ekspres atau pun perubahan pembukaan ABSW.

Tidak dilakukan penggantian penghantar yang lebih besar karena penghantar yang digunakan adalah penghantar yang paling besar. Rekonstruksi pada penyulang KTN 8 ternyata menyebabkan pembukaan ABSW tidak boleh sembarang karena ABSW yang dibuka disesuaikan agar setiap penyulang tidak melampaui 300 Ampere. Dengan demikian Algoritma Genetik tidak lagi dilakukan pada blok ini.

Pada tahun 2008 penyulang KTN 10 diprakirakan dilalui arus sebesar 304,34 Ampere. Dari 2 rekonstruksi yang dilakukan dikembangkan lagi dengan 4 kandidat rekonstruksi yakni model 1 a, 1 b dan 2a dan 2b.

Pada tahun 2009 arus yang lewat KTN 7 melampaui 300 Ampere maka pada model 1a dan 1b dikembangkan lagi masing-masing 3 rekonstruksi. Pada model 2 hanya dilakukan perubahan posisi saklar sambung. Dengan demikian ada 8 kandidat jaringan transisi (lihat tabel 1), dengan tahapan rekonstruksi seperti pada gambar 4.
(a) Rekonstruksi Model 1 dan dikembangkan dengan Model A
(b) Rekonstruksi Model 2 dan dikembangkan dengan Model B

Gambar 4. Tahapan jaringan transisi tahun 2005 sampai tahun 2009
(Tahun 2004 sebagai tahun awal)
Perhitungan biaya didasarkan tahun awal (2004) dengan kurs 1 US$ = Rp 9.000,-
Berikut adalah grafik pencapaian rugi-rugi berdasar analisis Algoritma Genetik.

Gambar 5. Grafik pencapaian rugi-rugi daya

5. SIMPULAN
a. Pada Blok I model 2 hasil analisis Algoritma Genetik dan hasil dari ETAP ternyata sama, ABSW yang dibuka adalah seksi Patran, TVRI2, SMA 4 dan AMP. Nilai rugi-rugi berdasar Analisis Algoritma Genetik berturut-turut untuk tahun 2005, 2006, 2007 dan 2008 adalah 71,2 kW; 87,4 kW; 108,9 kW dan 119,00 kW; sedangkan dengan analisis ETAP sebesar: 70,92 kW; 86,85 kW; 108,58 kW dan 119,6 kW.
b. Dari prakiraan pada tahun 2005 penyulang 8 pada Blok II akan dilalui arus 390,65 Ampere maka dilakukan rekonstruksi jaringan dengan 2 model

c. Setelah dilakukan reconfigurasi dan rekonstruksi pada Blok II ternyata pembukaan ABSW tertentu letaknya sehingga Algoritma Genetik tidakdiperlukan lagi. Untuk memanfaatkan Algoritma Genetik secara maksimal lebih baik dengan topologi jaringan yang disuplai oleh beberapa gardu induk dengan jaringan yang lebih kompleks.

d. Sebagai data masukan untuk perhitungan nilai fitness sebaiknya nilai arus setiap seksi untuk berbagai kondisi pembukaan ABSW dapat dibuat program yang langsung digabungkan dengan listing program Algoritma Genetik sehingga tidak perlu dilakukan evaluasi satu persatu secara manual dari analisis ETAP

DAFTAR PUSTAKA

TEKNOIN, Vol. 11, No.2, Juni 2006, 99-108

<table>
<thead>
<tr>
<th>Kandidat Jaringan Transisi</th>
<th>Tahsil pensam-</th>
<th>Pencemaran pengembangan konstruksi</th>
<th>Biaya total (TPC)</th>
<th>Unsat</th>
<th>pilihan</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>pemanfaatan</td>
<td>di dalam reji</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1)</td>
<td>1 Penetralaneder energi 1 dengan jarak 4 km</td>
<td>23.768.802.990.00</td>
<td>(1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4 penetralaneder energi 2 dengan jarak 8.5 km dan taklar samaing jarak 3 km</td>
<td>45.342.656.930.00</td>
<td>(8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2)</td>
<td>1 Penetralaneder energi 1 dengan jarak 4 km</td>
<td>40.122.726.900.00</td>
<td>(7)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4 penetralaneder energi 2 dengan jarak 8.5 km dan taklar samaing jarak 3 km</td>
<td>55.491.525.900.00</td>
<td>(5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(3)</td>
<td>1 Penetralaneder energi 1 dengan jarak 4 km</td>
<td>29.326.162.580.00</td>
<td>(3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4 penetralaneder energi 2 dengan jarak 8.5 km dan taklar samaing jarak 3 km</td>
<td>36.425.875.270.00</td>
<td>(6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(4)</td>
<td>1 Penetralaneder energi 1 dengan jarak 4 km dan taklar samaing jarak 1.5 km</td>
<td>24.952.416.100.00</td>
<td>(2)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Astrutti - Model Perencanaan Pengembangan Sistem Distribusi Berdasarkan Konfigurasi
Sistem Kendali Dual Fungsi Pengoperasian Motor Induksi 3 Fasa
Asnal Effendi

Studi Numerik dan Eksperimental Aliran 3-D pada Kombinasi Airfoil/Pelat Datar
Dengan Variasi Angle of Attack dan Pengaruh Clearance
Arfidian Rachman, Gunawan Nugroho

Model Perencanaan Pengembangan Sistem Distribusi Berdasarkan Konfigurasi
Dan Konstruksi Jaringan Menggunakan Algoritma Genetik
Budi Astuti, Sasongko Pramono Hadi, Soedjatmiko

Simulasi Inverse Kinematic Manipulator Planar 2 Derajat Kebebasan Dengan MATLAB
Hendra Setiawan, Dwi Ana Ratna Wati

Perancangan Tata Letak Modular Menggunakan Ukuran Performansi OMH
Antar Dan Dalam Modul
Agus Ristono

Rancangan Basis Data Pada Sistem Informasi Lantai Pabrik Berbasis Web
Novita Sakundarini

Evaluasi Teknik Dan Ekonomi Sistem Produksi Hidrogen
Dengan Proses Potokimia Menggunakan Energi Matahari
Sutarno, Agus Taufiq
Jurnal Teknologi Industri

Terakreditasi oleh Dirjen Dikti Depdiknas
No. 52/Dikti/Kep/2002

Jurnal Teknologi Industri TEKNOIN adalah jurnal yang mengkaji masalah yang berhubungan dengan teknologi industri. Penelitian yang dilaporkan dapat berupa penelitian untuk pengembangan keilmuan atau terapan.

Jurnal ini terbit empat kali dalam setahun, setiap bulan Maret, Juni, September, dan Desember.

Pelindung
Bachrun Sudrisno

Pemimpin Umum
Hari Purnomo

Pemimpin Redaksi
Agus Taufiq

Sekretaris Redaksi
M. Ridlwan
Dwi Ana Ratna Wati

Dewan Redaksi
Adhi Susanto
Adi Djoko Guritmo
Ahmad Zuhdan Fathoni
Ali Parkhan
Asmanto Subagyo
Benny Sudrisno
Gumbolo Hadi Susanto
Indah Molektuz Zuchairah
Ira Promasanti Rachmadewi
Jamar
Paryana Puspaputra
R. Chairul Saleh
Soedjatmiko
Sri Hartati
Sri Kusumadewi
Subanar

Alamat Redaksi
Fakultas Teknologi Industri Universitas Islam Indonesia
Jl. Kaliurang Km. 14 Yogyakarta 55501
Telp. (0274) 895287, Faks. (0274) 895007
E-mail: teknoin@fti.uii.ac.id
DAFTAR ISI

77-84 Asnal Effendi
Sistem Kendali Dual Fungsi Pengoperasian Motor Induksi 3 Fasa

85-98 Arfidiyan Rachman, Gunawan Nugroho
Studi Numerik dan Eksperimental Aliran 3-D pada Kombinasi Airfoil/Pelat Datar dengan Variasi Angle of Attack dan Pengaruh Clearance

99-108 Budi Astuti, Sasonko Pramono Hadi, Soedjatmiko
Model Perencanaan Pengembangan Sistem Distribusi Berdasar Konfigurasi dan Konstruksi Jaringan Menggunakan Algoritma Genetik

109-118 Hendra Setiawan, Dwi Ana Ratna Wati
Simulasi Inverse Kinematic Manipulator Planar 2 Derajat Kebebasan Dengan MATLAB

119-133 Agus Ristono
Perancangan Tata Letak Modular Menggunakan Ukuran Performansi OMH Antar Dan Dalam Modul

135-145 Novita Sakundarini
Rancangan Basis Data Pada Sistem Informasi Lantai Pabrik Berbasis Web

147-157 Sutarno, Agus Taufiq
Evaluasi Teknik Dan Ekonomi Sistem Produksi Hidrogen Dengan Proses Potokimia Menggunakan Energi Matahari

Untuk membantu kontinuitas penerbitan, setiap tulisan yang diterima dikenakan biaya sebesar Rp 250.000 dan dapat dikirimkan ke rekening atas nama Ir. Agus Taufiq, M.Sc. nomor rekening 1004012324 Bank Bukopin Cabang Pembantu Jalan Kalirungan Yogyakarta.