Japan Agricultural Research Quarterly

Purpose
Dissemination to overseas countries and within Japan of up-to-date information on new knowledge and developments in agriculture, forestry and fisheries researches that are carried out in Japan or under Japanese research programs undertaken in overseas countries particularly in developing regions.

History
Publication of the *Japan Agricultural Research Quarterly* (*JARQ*) was initiated in 1966 by the Agriculture, Forestry and Fisheries Research Council of the Ministry of Agriculture and Forestry, through the editorial services of the Tropical Agriculture Research Office, also established in 1966. *JARQ* provided readers outside of Japan with the latest information on key achievements and developments in agricultural research in Japan, with the expectation that this information would contribute to agricultural development in countries in tropical and subtropical regions. In June 1970, the Tropical Agriculture Research Office was reorganized into the Tropical Agriculture Research Center (TARC) within the Agriculture, Forestry and Fisheries Research Council, and TARC became responsible for the publication of *JARQ*. In October 1993, TARC was reorganized into the Japan International Research Center for Agricultural Sciences (JIRCAS), the Fisheries Division was created, and the coverage of *JARQ* was expanded to include fisheries research. In April 2001, JIRCAS became an Incorporated Administrative Agency under the supervision of the Ministry of Agriculture, Forestry and Fisheries, as part of a governmental administrative reform, while JIRCAS continued the publication of *JARQ* as original articles and research reviews. From 2002, JIRCAS decided to merge its companion publication, the *JIRCAS Journal*, into *JARQ*. The *JIRCAS Journal* was a refereed journal established in 1994 for the publication of scientific papers by JIRCAS researchers. With the merger of the two publications, *JARQ* now includes both review articles and papers on original research.

Publication Information
The *Japan Agricultural Research Quarterly* (*JARQ*) is published four times a year by the Japan International Research Center for Agricultural Sciences, Tsukuba, Ibaraki, 305-8686 Japan. The present circulation of each issue is 1,800. Issues are sent to over 110 countries, with nearly two-thirds going to developing regions. Subscription is limited to institutions only and is free of charge. Subscription inquiries should be directed to the Editorial Secretary of *JARQ*.

Editorial Policy
Editorial policies are established by the *JARQ* Editorial Board, with the President of JIRCAS as Chair. Until 2001, original and review papers were requested from authors based on nomination by an Editorial Board member. From 2002, *JARQ* now accepts papers contributed voluntarily directly by authors, as well as papers contributed by authors nominated by Board members. Papers may be contributed in any of the following two categories: (1) original articles which report the original findings of recent research activities of the authors; (2) research reviews which summarize a series of research activities of the authors and/or provide an update on the state-of-the-art in research in the authors' discipline to give perspective for future research. All papers are peer reviewed. In principle, the corresponding author of any type of papers should be Japanese. Two Board members in a related discipline will take responsibility for each of the articles. Final decision on acceptance of a paper is made by the Chair of the Editorial Board.

Editorial Inquiries
Questions on editorial policy and procedures should be sent to the Editorial Secretariat. Advice and comments are also welcome.

Copyright
Copyright to all manuscripts published in *JARQ* belongs to the Japan International Research Center for Agricultural Sciences (JIRCAS). An individual may make a single copy of an article for personal use. Multiple copies are authorized only with permission in writing from JIRCAS.

Published by
Incorporated Administrative Agency
Japan International Research Center for Agricultural Sciences
JIRCAS
Contents

REVIEWs

Crop Science
243 Yield Response of Upland NERICA under Rain-fed Upland Conditions with Different Levels of Nitrogen Application
Maya MATSUNAMI & Makie KOKUBUN

Agricultural Economics
251 Positive Mathematical Programming for Farm Planning: Review
Takahiro NAKASHIMA

ARTICLES

Crop Science
259 Overwintering Ability and Dry Matter Production of Sugarcane Hybrids and Relatives in the Kanto Region of Japan
Shotaro ANDO, Makoto SUGIURA, Tetsuya YAMADA, Masumi KATSUTA, Shoko ISHIKAWA, Yoshifumi TERAJIMA, Akira SUGIMOTO & Makoto MATSUOKA

Agricultural Environment
269 Lower Concentrations of Microelements in Leaves of Citrus Infected with 'Candidatus Liberibacter asiaticus'
Yoshikuni MASAOKA, Aryna PUSTIKA, Siti SUBANDIYAH, Akiko OKADA, Eko HANUNDIN, Benito PURWANTO, Mitsuru OKUDA, Yoshihiro OKADA, Akira SAITO, Paul HOLFORD, Andrew BEATTIE & Toru IWANAMI

277 Colony and Caste Specific Cuticular Hydrocarbon Profiles in the Common Japanese Hornet, Vespa analis (Hymenoptera, Vespidae)
Mashiko TOKORO & Shun'ichi MAKINO

Agricultural Engineering
285 Development of Circulating-Type Movable Bench System for Strawberry Cultivation
Shigehiko HAYASHI, Sadao SAITO, Yasunaga IWASAKI, Satoshi YAMAMOTO, Takato NAGOYA & Kenzo KANO

Animal Husbandry
295 Effects of Preservation of Porcine Oocytes by Dibutyryl Cyclic AMP on in vitro Maturation, Fertilization and Development
Dai-ichiro FUCHIMOTO, Shoichiro SENBON, Shunichi SUZUKI & Akira ONISHI

Fisheries
301 Useful Techniques for Artificial Fertilization of the Ommastrephid Squid Illex argentinus
Mitsuo SAKAI, Norma E. BRUNETTI, Marcela L. IVANOVIC, Beatriz ELENA & Yasunori SAKURAI
Lower Concentrations of Microelements in Leaves of Citrus Infected with ‘Candidatus Liberibacter asiaticus’

Yoshikuni MASAOKA¹, Aryna PUSTIKA², Siti SUBANDIYAH², Akiko OKADA¹, Eko HANUNDI², Benito PURWANTO², Mitsuru OKUDA³, Yoshihiro OKADA³, Akira SAITO³, Paul HOLFORD⁴, Andrew BEATTIE⁵ and Toru IWANAMI⁶

¹ Graduate School of Biosphere Science, Hiroshima University (Higashi-Hiroshima, Hiroshima 739–8528, Japan)
² Department of Entomology and Plant Pathology, Gadjah Mada University (Yogyakarta 55281, Indonesia)
³ Department of Soil Science, Gadjah Mada University (Yogyakarta 55281, Indonesia)
⁴ National Agricultural Research Center for Kyushu and Okinawa Region, National Agriculture and Food Organization (NARO) (Koshi, Kumamoto 861–1192, Japan)
⁵ Centre for Plant and Food Science, University of Western Sydney (Penrith South DC, NSW 1797, Australia)
⁶ National Institute of Fruit Tree Science, NARO (Tsukuba, Ibaraki 305–8605, Japan)

Abstract
Citrus trees affected by greening (huanglongbing, HLB) often develop symptoms that resemble those of Zn or Fe deficiency in their leaves. However, there have been few studies of mineral concentrations in infected leaves. To examine the effects of infection by ‘Candidatus Liberibacter asiaticus’ (the causal organism of the Asiatic form of HLB) on mineral nutrition, Citrus × jambhiri (Lush.), C. × reticulata cv. Siem, and C. depressa Hayata were patch-grafted with infected bark squares and grown in pots in greenhouses in Japan and Indonesia. In addition, leaves were collected from field-grown C. × tanaka Hayata and C. × uchigawa Marc. in Japan and C. × reticulata cv. Siem in Indonesia, and their disease status was determined by PCR. Leaf samples were homogenized in 2-(N-morpholino)ethanesulfonic acid buffer and the concentrations of water-soluble Cu, Fe, Mn, and Zn in the macerates were determined using inductively coupled plasma atomic emission spectrometry (Japan) or atomic absorption spectrometry (Indonesia). In general, infected leaf samples had lower Fe and Zn. On average, the concentrations of Fe and Zn in infected plants were approximately half those in healthy plants. Cu was not significantly reduced by infection and Mn was occasionally lower. In C. × uchigawa, the concentrations of Fe and Zn were reduced before chlorosis appeared. These results suggested that the concentrations of particular elements (Fe and Zn) rather than element concentrations in general are reduced by infection by ‘Candidatus Liberibacter asiaticus’.

Discipline: Plant disease
Additional key words: Citrus depressa, Citrus greening, Huanglongbing, Liberibacter

Introduction
Greening (huanglongbing, HLB) is one of the most devastating diseases for citrus in many parts of the world and is caused by non-culturable, phloem-limited bacteria of the Candidatus genus Liberibacter. ‘Candidatus Liberibacter africanus’ causes the African form of the disease and is mainly transmitted by a species of citrus psyllid, Triozas eriophorae del Guercio, whilst ‘Ca. Liberibacter asiaticus’ (Las) causes the Asian form of the disease and is vectored by another psyllid, Diaphorina citri Kuwayama. The African form is found in cooler areas and at higher altitudes, whereas the Asian form is more widely

This paper reports the results partially obtained in the joint project on “Characterization of Citrus Greening Organism and Tristeza Virus and Analyzing the Disease Development to Support the Management of the Diseases” sponsored by the Japan Society of the Promotion of Science.

*Corresponding author: e-mail: lwshs37@affrc.go.jp
Received 29 September 2009; accepted 1 November 2010.
spread in warmer lowlands in tropical and subtropical areas. Recently, a third species of bacterium causing HLB was found in Brazil and was designated as 'Candidatus Liberibacter asiaticus'. The vector of 'Ca. Liberibacter americanus' has recently been shown to be Diaphorina citri.

In the leaves of infected citrus, the bacteria typically induce chlorosis that resembles the symptoms associated with Fe or Zn deficiency. However, there have been few studies to precisely quantify Fe, Zn, or other microelements in infected plants. Work on the African form of the disease in an unnamed citrus species compared microelement concentrations in diseased and healthy plants. These studies found that concentrations of potassium were higher in infected plants, whilst calcium and magnesium were lower. A study of infected plants in Réunion found lower concentrations of Ca, Mn, and Zn in citrus trees. However, the species of citrus tested and the number of trees treated were not given, and no statistical inference was made. In addition, on this island, both African and Asian forms of the disease occur and the form infecting the trees was also not reported. The study of Koen and Langenegaar and that of Aubert relied on detection using visual symptoms, and the presence of liberibacters was not confirmed by PCR.

The African form of the disease is widely distributed throughout Southeast Asia and is causing significant losses in citrus production. As the symptoms of HLB closely resemble those of Fe and Zn deficiency, it is important to know whether changes in these elements are commonly associated with infection by HLB. However, since the reports of Koen and Langenegaar and Aubert, there has been no work on mineral concentrations within HLB-infected trees. Therefore, this study looked at the mineral concentrations in a range of citrus species and cultivars grown in different environments to determine whether infection by 'Ca. Liberibacter asiaticus' affects plant element composition.

Materials and methods

1. Plant taxonomy

A number of systems for classifying species of citrus exist, and the taxonomy of the genus is under review. The citrus species used in this study were: the rough lemon (Citrus taiensis Risso, syn. C. japonica Lush), the flat lemon (C. reticulata Blanco cv. Depressa, syn. C. depressa Hayata), the Siem mandarin (C. reticulata cv. Siem), the Tankan mandarin (C. reticulata cv. Tankan, syn. C. tankan Hayata), and the Satsuma mandarin (C. reticulata cv. Satsuma, syn. C. unshiu Marc). As most readers are likely to be more familiar with the classifications of Swingle and Reece and Tanaka, the names used by these authors will be employed throughout the remainder of this article.

2. Pot trials

For tests of plants grown in the greenhouse, seedlings of rough lemon (Citrus japonica Lush) and seedlings of flat lemon (C. depressa Hayata [a variety of mandarin]) were grown at the National Agricultural Research Center for Kyushu and Okinawa Region, Koshi, Japan, in pots filled with one liter of a commercial mix of soil and peat moss (Kenbyo, Yae Company, Nagasaki, Japan). In Indonesia, Siem mandarin (C. reticulata cv. Siem) plants grafted on rough lemon seedlings were grown at the University of Gadjah Mada (UGM), Yogyakarta, in pots filled with 5 kg of a 1:1 mixture of quartz sand, cocopeat, and composted lamb/goat dung. For each species, four to five plants were inoculated with 'Ca. Liberibacter asiaticus' (Las) and a further five plants acted as healthy controls. All the plants were about 20 months old when they were grafted-inoculated. In Japan, plants were watered with an equal volume of water, typically 100 ml per day, and were fertilized equally every month with 0.5 g of a commercial chemical fertilizer (NPK 6:5:6.19). In Indonesia, a slow release fertilizer NPK 15:15:15 was used at 5 g per pot. In both countries, the temperature of the greenhouses was 26–35°C during the day and 25–30°C at night.

For infection in Japan, a rough lemon plant harboring Las strain OC94-31 served as the source of inoculum. Budsticks were taken from the source plant and side-grafted to the stem of recipient plants about 50 mm above the ground. In Indonesia, budsticks were obtained from three field-grafted, infected trees of Siem mandarin. The bark was removed from the budsticks to give patches of approximately 5 x 10 mm, and grafted onto the receptor Siem mandarin trees on rough lemon rootstocks. Each Siem mandarin tree was grafted with three bark patches that were separately taken from each infected plant. About 10 leaves were taken from each grafted citrus plant for analyzing microelements.

3. Field investigations

Survey trips to citrus fields in Okinawa, Japan, were made in June 2005. Fully expanded leaves of Tankan mandarin (C. tankan Hayata) and Satsuma mandarin (C. unshiu Marc) were collected. For Tankan mandarin, three to four shoots at shoulder height were evenly chosen from each plant, and 15 to 20 leaves were sampled at random from middle leaf position of each shoot. For Satsuma mandarin, leaves from healthy (PCR-negative) plants were sampled in the same way as for Tankan. However, on infected (PCR-positive) plants, leaves showing symp-
toms (chlorosis) were sampled separately from those without symptoms. Since spring shoots appear in March in Okinawa, the age of the leaves was estimated to be about three months. About 10 leaves that were collected from a shoot of each branch were used for extracting microelements. In Indonesia, leaves were collected from Siem mandarin trees growing in a farmer’s field in the Kulonprogo District, Yogyakarta Province, Java, in October 2006, following the sampling method established for Tankan and Satsuma mandarin in Japan. Before analyzing microelements from these leaves, all plants in both countries were tested for the presence of Las by PCR using other leaves of the same trees. Four randomly chosen leaves were tested for PCR detection, and a tree was determined to be positive for Las when at least one leaf tested positive by PCR.

4. Measurements of microelements in leaves

A batch of about 10 leaves was used for analyzing microelements in the leaves of each shoot. The microelement concentration of one main upright shoot was considered as the concentration of each potted plant, whereas the average of three to four shoots was used to estimate the microelement concentration of each plant in the field. Leaves were washed several times with tap water, three times with distilled water, and then moisture was gently removed by clean paper towels. The leaves were then bisected along the main vein. One half of each leaf was dried in an oven at 70°C for 48 h to determine leaf dry weight. The other half of each leaf was weighed and then homogenized in 20 ml of 2-(N-morpholino)ethanesulfonic acid (MES) buffer (1 mM, pH 6.0). The macerate was centrifuged at 10,000 rpm for 15 min, and then the concentrations of Cu, Fe, Mn and Zn in the supernatant were determined using inductively coupled plasma atomic emission spectrometry (ICP-AES, Japan) or atomic absorption spectrometry (AAS, Indonesia). The concentrations of the microelements were then expressed on a dry weight basis for each tree.

5. DNA extraction and detection by PCR

Total DNA was extracted from about 0.2 g of leaf midribs using cetyletrimethylammonium bromide2 and suspended in 200 μl of TE buffer (10 mM Tris-HCl, 1 mM EDTA, pH 8.0). PCR was performed to amplify a portion of the nusG-rplKAJL gene cluster19 using primers MHO353 (5'-GTTCTCTGATGTCCTTGCCTTGCCTTCTTCA-3') and MHO354 (5'-GACCTACACCATAGCATGCCCCCTTCTA-3') reported by Hoy et al.28. In Japan, the PCR reaction mixture (20 μl) consisted of 200 μM of each dNTP, 0.25 μM of each primer, 0.1 unit of ExTaq (Takara, Bio Inc., Shiga, Japan), 1 x Ex Taq buffer supplied by the manufacturer and an arbitrary amount of DNA template (approximately 100 ng). The amplifications were performed in a DNA Thermal Cycler 9700 (Applied Biosystems, Foster City, CA) for 40 cycles under the following conditions: 30 s at 94°C, 30 s at 56°C and 60 s at 72°C with an initial denaturation step of 2 min at 94°C. In Indonesia, the PCR reaction mixture (15 μl) consisted of 200 μM of each dNTP, 0.22 μM each of each primer (MHO353 and MHO354), 0.1 unit of Taq polymerase with anti-Taq monoclonal antibodies (Microzone Ltd, Haywards Heath, West Sussex, UK), 1 x manufacturer's buffer and 1 μl of DNA extract. The amplifications were performed in a DNA Thermal Cycler (MyCycler, BioRad) for 35 cycles under the following conditions: one cycle; 10 s at 94°C, 30 s at 56°C and 60 s at 72°C with an initial denaturation step of 5 min at 94°C.

6. Statistics

Analyses of variance were performed using STATISTICA for Windows, Version 6 (StatSoft, Inc., Tulsa, OK).

Results

1. Measurement of microelements in potted plants

The yellowing and motting of leaves appeared on shoots of the rough lemon, the flat lemon, and Siem mandarin plants eight to twelve months after graft-inoculation. All graft-inoculated trees tested positive by PCR for Las; all uninoculated trees were PCR-negative (data not shown). In the trial using rough lemon, both the average concentrations of Fe and Zn were reduced in infected plants by approximately a half compared to levels in healthy plants (Fig. 1, Table 1). The average concentrations of Cu and Mn were not significantly affected by infection (Table 1). In the trial using flat lemon, all tested microelements except for Cu were significantly reduced by infection (Fig. 1, Table 1). For Siem mandarins, only the concentration of Fe was affected by infection by Las, with levels in infected plants again being half those of the healthy controls (Fig. 1, Table 1).

2. Measurement of microelements in citrus in the field

Detection of Las by PCR showed that there were four infected and three healthy trees of Satsuma mandarin and three infected and twelve healthy trees of Tankan mandarin in the orchards in Okinawa, Japan, whereas there were three infected and three healthy trees of Siem mandarin in Java, Indonesia. For the Tankan and Siem mandarins, concentrations of Zn were lower in diseased than in healthy plants with concentrations being a third to
Fig. 1. Mean levels of microelements in dry matter (DM) found in healthy and HLB-infected citrus. The plants were either growing in the field (F) or were from pot trials (P)

Bars represent standard error. Abbreviations: PI, pot trial in Indonesia; PJ, pot trial in Japan; FI, field trial in Japan; FI, field trial in Indonesia.

: Diseased, : Healthy.

Table 1. Statistical significance of the difference between the microelement concentrations found in healthy and HLB-infected citrus

<table>
<thead>
<tr>
<th>Citrus</th>
<th>Copper</th>
<th>Iron</th>
<th>Manganese</th>
<th>Zinc</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(F)</td>
<td>(p^a)</td>
<td>(F)</td>
<td>(p)</td>
</tr>
<tr>
<td>Siem (pot trial in Indonesia)</td>
<td>4.495</td>
<td>0.071</td>
<td>7.95</td>
<td>0.022</td>
</tr>
<tr>
<td>Rough lemon (pot trial in Japan)</td>
<td>3.451</td>
<td>0.100</td>
<td>5.832</td>
<td>0.042</td>
</tr>
<tr>
<td>Flat lemon (pot trial in Japan)</td>
<td>0.243</td>
<td>0.640</td>
<td>18.706</td>
<td>0.005</td>
</tr>
<tr>
<td>Tankan (field material in Japan)</td>
<td>0.568</td>
<td>0.460</td>
<td>8.123</td>
<td>0.014</td>
</tr>
<tr>
<td>Siem (field material in Indonesia)</td>
<td>0.406</td>
<td>0.558</td>
<td>5.114</td>
<td>0.087</td>
</tr>
</tbody>
</table>

Significant differences are in bold.
The plants were either growing in the field or were from pot trials. The mean concentration of each element is shown in Fig. 1.
a) \(F \) value, b) Significance level.
a half those in healthy material. Fe was also significantly lower in Tankan mandarin (Fig. 1, Table 1). The average concentrations of Fe in Siem mandarin were 3.25 and 30.65 µg g⁻¹ in dry matter (DM) in the symptomatic and healthy plants, respectively (Fig. 1). However, despite a roughly 10-fold difference in concentration due to the large variance of Fe concentrations in the symptomless material, this difference fails to be statistically significant (Table 1). No statistically significant differences were found in Cu and Mn concentrations in these two varieties (Table 1).

In Satsuma mandarin, concentrations of Fe, Mn, and Zn were significantly higher in leaves from healthy plants than from diseased ones (Fig. 2, Table 2). However, there was little difference in concentrations of these elements between symptomatic and asymptomatic leaves from the same infected trees (Fig. 2). No significant difference was found in Cu concentrations of the leaves from healthy trees and those from infected trees (Table 2).

Discussion

This study has looked at mineral concentrations in citrus plants infected with Las. Infected leaves had lower Fe concentrations except for one marginal case in the field samples of Siem mandarin in Indonesia. Infected leaves also contained a significantly lower concentration of Zn except for one pot trial of Siem mandarin in Indonesia. On average, concentrations of Fe and Zn in infected plants were approximately half those in healthy plants. Cu was not significantly reduced in any of the trials, and Mn was occasionally lower in infected leaves. These results suggested that the concentrations of particular elements (i.e., Fe and Zn) rather than element concentrations in general are affected by infection by *Ca. Liberibacter asiaticus*. Given the similarity of symptoms caused by *Ca. L. africanus* and *Ca. L. americanus*, it is likely that similar disturbances in elements occur during disease development after infection by these pathogens.

The material used in this study comes from four cultivars of mandarin (Tankan, Satsuma, flat lemon, and Siem) and an assumed hybrid (rough lemon) between *C. reticulata* and either *C. medica* L. (the citron) or *C. limon* (L.) Osbeck (the lemon)⁹,¹³. In Réunion, Aubert¹ also found lower concentrations of Zn, together with reductions in Ca and Mn in citrus trees. The plants used in our study and in that of Aubert¹ were grown in a range of different conditions and included field- and greenhouse-grown plants. In addition, different isolates of Las in Japan and Indonesia were used and would presumably be different from the strain(s) present in Réunion. Thus, reductions in Fe and Zn appear to be a common feature of infection by Las. The citrus cultivars chosen for our study are widely grown in Japan and other Asian countries. Therefore, these insights into the pattern of mineral concentrations should be broadly applicable to commercial citrus in Asia.

The symptoms associated with Fe and Zn deficiencies in citrus include interveinal chlorosis, and the symptoms induced by HLB infection can be mistaken for these deficiencies. Fe is a cofactor for at least 139 enzymes that catalyze a wide range of biochemical reactions including catalase, peroxidase, and lipoxigenase, chlorophyll metabolism, respiration and insufficient Fe supply reduces
protein synthesis, particularly membrane proteins. Zn is also involved in many biochemical reactions including sugar, amino acid, and IAA metabolism. Thus, our results provide an explanation for the similarity of the symptoms of HLB with those caused by Fe and Zn deficiencies.

It is surprising that only Fe and Zn concentrations in infected plants were affected. Any general dysfunction of the vasculature resulting from infection would be likely to affect all elements. It is known that infection by Las disrupts the phloem; therefore, infection has the possibility of affecting element retranslocation within the plant. However, there is no feature of the chemistry of Fe and Zn that sets these two elements apart from Cu and Mn, and all of these elements are relatively immobile within the plant. It has been proposed that Lin produces a toxin, as cell-free extracts from infected plants cause chlorosis when injected into healthy citrus or tobacco. In addition, several plant pathogenic bacteria produce metal chelating siderophores. Therefore, it is possible that the toxin or siderophores interact with Fe and Zn so reducing their availability to the plant.

The results of this study have a number of practical implications. Currently used molecular assays that amplify fragments of the genomes of the organisms that cause HLB suffer from problems caused by the uneven and sporadic distribution of the pathogens within infected trees. This leads to problems with false negative results. Analysis of mineral concentrations may be used to supplement these methods of detection. The reduced levels of Fe and Zn in non-symptomatic leaves of the Satsuma mandarin suggest that reductions in mineral concentrations may precede the development of chlorosis. It may be possible that the lower Fe and or Zn concentrations in non-symptomatic shoots can be used to make a diagnosis of greening. However, this diagnosis method requires knowledge of the normal element status of plants and might not be applicable when most of the citrus trees in the field have low Fe concentrations due to lime-induced Fe deficiency. Furthermore, as Fe and Zn deficiencies appear early in the development of the disease, applications of these elements may reduce symptom expression and increase tree life.

References
