<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Page(s)</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sri Nuryani H.U., Muhsin Haji</td>
<td>1-13</td>
<td>Serapan Hara N, P, K Pada Tanaman Padi Dengan Berbagai Lama Penggunaan Pupuk Organik Pada Vertisol Sragen</td>
</tr>
<tr>
<td>Y.Dwi Setyawana, Johan Lauw,</td>
<td>14-18</td>
<td>Indeks Stabilitas, Infiltrasi dan Daur Hara Pada Tegakan Hutan Tanaman Industri di Sei Tapah, Jambi</td>
</tr>
<tr>
<td>Hendra Eka Martin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sumihar Hutapea, Syamsul A.</td>
<td>19-25</td>
<td>Pemetaan Erosi Daerah Aliran Sungai Deli Dengan Menggunakan Sistem Informasi Geografi</td>
</tr>
<tr>
<td>Siradz, Azwar Ma'as, dan Rachmad</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jayadi</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subroto Ps</td>
<td>26-34</td>
<td>Kajian Karakteristik Tanah Bagi Ubi Cilembu di Nagarawangi Rancakalong Sumedang</td>
</tr>
<tr>
<td>Heri Junedi dan Arsyad, AR</td>
<td>35-41</td>
<td>Pemanfaatan Kompos Jerami Padi dan Kapur Untuk Memperbaiki Beberapa Sifat Fisik Tanah Ultisol dan Hasil Kedelai (Glycine Max L.Merrill) Musim Tanam Kedua</td>
</tr>
<tr>
<td>Andy Wijanarko dan Eko Hanudin</td>
<td>42-51</td>
<td>Karakteristik Jerapan P oleh Empat Ordo Tanah</td>
</tr>
<tr>
<td>Soetanto Abdoellah dan Denna</td>
<td>52-57</td>
<td>Pengelolaan Nutrisi Tanaman Terpadu Pada Perkebunan Kakao</td>
</tr>
<tr>
<td>Eriani M. Desiana</td>
<td>58-67</td>
<td>Critical Land in The Middle and Downstream of Kutai Kartanegara District, East Kalimantan</td>
</tr>
<tr>
<td>Joko Priyono dan Suwardji</td>
<td>68-71</td>
<td>Evaluation for the Applicability of Sprinkle Big Gun and Gravitation Irrigation Systems for Watering Food Crops in Two Different Conditions of Dryland in NTB</td>
</tr>
</tbody>
</table>

Diterbitkan oleh
FAKULTAS PERTANIAN UNIVERSITAS GADJAH MADA YOGYAKARTA
JURNAL ILMU TANAH DAN LINGKUNGAN

Adalah jurnal untuk publikasi penelitian, review dan ulasan ilmiah dalam semua cabang ilmu tanah, antara lain: pedogenesis, morfologi dan klasifikasi tanah, mineralogi, fisika dan kimia tanah, kesuburan tanah, iklim pertanian, biologi tanah, dan lingkungan.

Penanggung Jawab
Dekan Fakultas Pertanian UGM

Wakil Penanggung Jawab
Ketua Jurusan Tanah Fakultas Pertanian UGM

Ketua Dewan Redaksi
Dr. Ir. Syamsul Arifin Siradz, M.Sc.

Redaksi Pelaksana
Dr. Ir. Eko Hanudin, M.S.
Dr. Ir. Sri Nuryani Hidayah Utami, M.Sc.
Nasih Widyaw Yuwono, S.P., M.P.
Sulakhudin, S.P., M.P.

Redaksi Penelaah
Prof. Dr. Bostang Radjagukguk, M.Agr.Sc. (FP-UGM)
Prof. Dr. Sudarmadji, M.Eng.Sc. (F. Geografi-UGM)
Prof. Dr. Ir. Azwar Maas, M.Sc. (FP-UGM)
Prof. Dr. Totok Gunawan, M.S. (F. Geografi UGM)
Prof. Dr. Ir. Bambang Djadmo Kertonegoro, MSc. (FP-UGM)
Prof. Dr. Ir. Bambang Hendro Sunarminto, SU. (FP-UGM)
Prof. Dr. Ir. Suntoro Wongso Atmojo, M.S. (FP-UNS)
Dr. Ir. Subagyo, MSc. (Puslittanak-Bogor)

Administrasi
Sunarto
Valensi Kautsar

Alamat Redaksi
Fakultas Pertanian UGM. Jl Flora, Bulaksumur. Yogyakarta, 55281
Telp/Fax: 62-274-548814
e-mail: jitlum@gmail.com, website: http://soil.faperta.ugm.ac.id

JURNAL ILMU TANAH DAN LINGKUNGAN
Diterbitkan secara berkala oleh Fakultas Pertanian Universitas Gadjah Mada

Biaya langganan sebesar Rp 50.000,- (per edisi), belum termasuk ongkos kirim.
Biaya langganan dapat dikirimkan kepada:
Sri Nuryani Hidayah Utami, rekening nomor 0218383984
BNI 1946 Cabang UGM Yogyakarta
KATA PENGANTAR

Puji syukur ke hadirat Tuhan Yang Maha Esa karena Jurnal Ilmu Tanah dan Lingkungan volume 10 nomor 1 dapat diterbitkan. Pada edisi ini ada 9 judul tulisan yang membahas masalah di bidang kesuburan, fisika, pengelolaan tanah, hidrologi dan mineralogi.

Penghargaan dan ucapan terima kasih juga Redaksi sampaikan kepada Tim Reviewer yang dengan dedikasi yang tinggi telah membantu dalam proses penelaahan semua makalah yang masuk ke mejat Redaksi. Mudah-mudahan kerjasama yang telah terjalin dengan baik antara Penulis Naskah – Tim Reviewer – Dewan Redaksi Jurnal Ilmu Tanah dan Lingkungan dapat terus berlanjut, sehingga Jurnal ini dapat menjadi mediator bagi perkembangan ilmu pengetahuan di Indonesia, khususnya di bidang Ilmu Tanah dan Lingkungan.

Yogyakarta, Agustus 2010

Dewan Redaksi
KARAKTERISTIK JERAPAN P OLEH EMPAT ORDO TANAH

Andy Wijanarko¹ dan Eko Hanudin²

¹ Balai Penelitian Tanaman Kacang-kacangan dan Umbi-umbian, Malang.
² Laboratorium Kimia dan Kesuburan Tanah, Jurusan Ilmu Tanah, Fakultas Pertanian UGM, Yogyakarta.
E-mail: ndy_wijanarko@yahoo.com

Abstract
Laboratory experiment was carried out to compare the sorption characteristics of P in four soil orders with Langmuir equation approach. Experiments conducted in the Laboratory of Soil and Plant, Balitkab, Malang. Four soil orders namely Alfisols-Bitar, Vertisols-Ngawi, Andisols-Malang and Ultisol-Central Lampung were reacted with a series of KH₂PO₄ solution containing 0, 10, 20, 40, 60, 80, 120, 160, 200, 250 and 300 ppm P. The solution of CaCl₂ 10 mM was used to keep the ionic strength of the suspension constant. The amount of P adsorbed was calculated based on the amount of P added subtracted by concentration of P in equilibrium condition. The results indicated that P adsorption isotherm in the four soils has a similar curve category (L-curve). Based on the Langmuir equation was obtained the maximum P sorption (b) values of the soils from the highest to lowest level as follow: Andisols-Malang > Ultisols-Central Lampung > Alfisols-Bitar > Vertisols-Ngawi. The bonding energy constant (k) of the soils resulted in a same trend with the b values. Practical implication of the values is P fertilizer dosage should be recommended higher for Andisols than Ultisols, Alfisols and Vertisols.

Keywords: Langmuir P adsorption equation, Alfisols, Vertisols, Andisols and Ultisols.

Pendahuluan
Pengetahuan tentang perilaku fosfat (P) dalam tanah sangat penting mengingat P merupakan unsur hara esensial yang dibutuhkan dalam jumlah yang cukup banyak oleh tanaman. Fosfat dalam tanaman diperlukan untuk pembentukan ATP yang merupakan sumber energi dalam proses perkembangan dan pertumbuhan tanaman (Sheng-Li et al., 2008). Hara P dalam tanah dijumpai dalam bentuk organik dan anorganik. Biasanya bentuk P-anorganik yang banyak diserap tanaman berupa ortofosfat primer (H₂PO₄⁻) dan ortofosfat sekunder (HPO₄²⁻) (Tisdale et al., 1985), sedang P-organik sebagian besar berbentuk ester dari ortofosfat misalnya inositol fosfat (10-50%), fosfolipid (1-5%), asam nukleat (0,2-2,5%) (Havlín et al., 2005).

Kadar P dalam larutan tanah dipengaruhi oleh kecepatan dan tingkat imobilisasi secara biologi dan reaksi dengan fraksi-fraksi mineral tanah. Tanah yang didominasi oleh lempung tipe 1:1 dan senyawa Al-Fe oksida mampu menjerap P dalam larutan menjadi bentuk P tidak tersedia bagi tanaman (Wisawapipat et al., 2009). Ketersediaan hara P pada tanah masam dipengaruhi oleh pH tanah, Al dan Fe oksida/hidroksida dan bahan organik. Pada tanah masam terutama Oxisol dan Ultisol, banyak Fe dan Al dalam bentuk bebas yang akan menjerap P sehingga menjadi bentuk kurang larut. Bentuk Al-P dan Fe-P ini tidak larut dan kurang tersedia bagi tanaman (Gimsing et al., 2007, Mimmo et al., 2009). Fikrasi P tidak hanya terjadi pada tanah masam, tetapi juga terjadi pada tanah-tanah alkalini. Tanah-tanah tersebut banyak mengandung ion Ca dan mengandung CaCO₃ yang dapat menjerap P menjadi trikaliumfosphat yang tak larut dan mengendap (Tan, 2000).

Besarnya jerapan P dalam tanah ditentukan antara lain oleh karakteristik tanahnya. Menurut Sanchez (1976), tanah-tanah yang mengandung banyak alfalin, seperti Andosol merupakan penjerap P tertinggi, dengan besar jerapan lebih dari 1000 ppm fosfor. Selanjutnya, penjerap tertinggi kedua adalah Oxisol dan Ultisol dengan besar jerapan lebih dari 500 ppm, khususnya untuk tanah-tanah yang bertekstur kasar. Adanya jerapan P yang tinggi, berdampak serius bagi tanaman. Salah satu dampaknya adalah pemupukan P tidak efisien. Pupuk TSP yang diberikan ke dalam tanah, hanya sekitar 15-
20% yang dapat dimanfaatkan oleh tanaman, sisanya tertinggal sebagai residu dalam tanah (Bastia, 1988).

Berdasarkan pertimbangan komponen mineral aktif yang ada dalam tanah Alfisol, Vertisol, Andisol dan Ultisol, penelitian ini bertujuan untuk membandingkan karakteristik jerapan P keempat ordo tanah tersebut dengan menggunakan pendekatan persamaan Langmuir (Fox dan Kamprath, 1970) sebagai berikut:

\[q = \frac{kbC}{(1+kC)} \]

dimana:

- \(q \) : jumlah P yang dijerap per satuan berat tanah
- \(k \) : konstanta berkaitan dengan energi ikatan
- \(b \) : daya jerap P maksimum
- \(C \) : kadar P dalam larutan keseimbangan.

Untuk memudahkan perhitungan persamaan di atas dapat dibah menjadi persamaan regresi sederhana sbb:

\[C/q = 1/kb + 1/bC \]

Pengeplotan antara \(C/q \) dengan \(C \) menghasilkan garis lurus dengan persamaan regresi \(Y = q + hX \). Nilai \(h \) persamaan regresi tersebut sama dengan \(1/b \) persamaan di atas, sehingga nilai \(b \) dapat ditentukan. Setelah nilai \(b \) diketahui maka nilai \(k \) dapat dihitung.

Hasil dan Pembahasan

Karakteristik Kimia Tanah Percobaan

Hasil karaterisasi sifat kimia keempat tanah tersebut disajikan pada Tabel 1. Pengharkatan sifat kimia tanah dilakukan dengan mengikuti kategori dari Balai Penelitian Tanah (2009). Berdasarkan hasil analisis menunjukkan bahwa Alfisol-Blitar mempunyai nilai \(pH-H_2O \) yang termasuk harkat agak masam, kadar basa-basa (K, Ca dan Mg) nya berklas rendah sampai sangat tinggi, KPK tanah tinggi dan kadar P-Bray sedang, dan
<table>
<thead>
<tr>
<th>P ditambahkan (ppm)</th>
<th>Andisol-Malang</th>
<th>% dijerap</th>
<th>Ultisol-Lampung Tengah</th>
<th>% dijerap</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C (mg/L)</td>
<td>q (mg/kg)</td>
<td>C/q</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
</tr>
<tr>
<td>10</td>
<td>0,081</td>
<td>9,919</td>
<td>0,008</td>
<td>99,19</td>
</tr>
<tr>
<td>20</td>
<td>0,105</td>
<td>19,895</td>
<td>0,005</td>
<td>99,48</td>
</tr>
<tr>
<td>40</td>
<td>0,206</td>
<td>39,794</td>
<td>0,005</td>
<td>99,49</td>
</tr>
<tr>
<td>60</td>
<td>0,317</td>
<td>59,683</td>
<td>0,005</td>
<td>99,47</td>
</tr>
<tr>
<td>80</td>
<td>0,425</td>
<td>79,575</td>
<td>0,005</td>
<td>99,47</td>
</tr>
<tr>
<td>120</td>
<td>0,578</td>
<td>119,422</td>
<td>0,004</td>
<td>99,52</td>
</tr>
<tr>
<td>160</td>
<td>0,802</td>
<td>159,198</td>
<td>0,005</td>
<td>99,50</td>
</tr>
<tr>
<td>200</td>
<td>1,016</td>
<td>198,984</td>
<td>0,005</td>
<td>99,49</td>
</tr>
<tr>
<td>250</td>
<td>3,280</td>
<td>246,720</td>
<td>0,013</td>
<td>98,69</td>
</tr>
<tr>
<td>300</td>
<td>8,900</td>
<td>291,100</td>
<td>0,030</td>
<td>97,03</td>
</tr>
</tbody>
</table>

Keterangan : C = P larut dan q = P terjerap

<table>
<thead>
<tr>
<th>P ditambahkan (ppm)</th>
<th>Alisol Blitar</th>
<th>% dijerap</th>
<th>Vertisol Ngawi</th>
<th>% dijerap</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C (mg/L)</td>
<td>q (mg/kg)</td>
<td>C/q</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
</tr>
<tr>
<td>10</td>
<td>0,010</td>
<td>9,990</td>
<td>0,001</td>
<td>99,90</td>
</tr>
<tr>
<td>20</td>
<td>0,318</td>
<td>19,682</td>
<td>0,016</td>
<td>98,41</td>
</tr>
<tr>
<td>40</td>
<td>0,536</td>
<td>39,464</td>
<td>0,014</td>
<td>98,66</td>
</tr>
<tr>
<td>60</td>
<td>1,083</td>
<td>58,917</td>
<td>0,018</td>
<td>98,20</td>
</tr>
<tr>
<td>80</td>
<td>1,800</td>
<td>78,200</td>
<td>0,023</td>
<td>97,75</td>
</tr>
<tr>
<td>120</td>
<td>2,424</td>
<td>117,576</td>
<td>0,021</td>
<td>97,98</td>
</tr>
<tr>
<td>160</td>
<td>4,370</td>
<td>155,630</td>
<td>0,028</td>
<td>97,27</td>
</tr>
<tr>
<td>200</td>
<td>6,484</td>
<td>193,516</td>
<td>0,034</td>
<td>96,76</td>
</tr>
<tr>
<td>250</td>
<td>14,764</td>
<td>235,236</td>
<td>0,063</td>
<td>94,09</td>
</tr>
<tr>
<td>300</td>
<td>15,850</td>
<td>284,150</td>
<td>0,056</td>
<td>94,72</td>
</tr>
</tbody>
</table>

Keterangan : C = P larut dan q = P terjerap
Gambar 2. Kurva persamaan Langmuir untuk jerapan P pada Vertisol-Ngawi (a), Andisol-Malang (b), Alfisol-Malang (c) dan Ultisol Lampung Tengah (d).

Hasil pengeplotan nilai C dan C/q diperoleh kurva persamaan Langmuir sebagaimana disajikan pada Gambar 2. Nilai b diperoleh dari nilai gradien atau kemiringan garis, sedangkan nilai k dapat diperoleh dari intercept atau titik potong antara garis dengan sumbu Y. Hasil perhitungan nilai b dan k disajikan pada Tabel 4. Berdasarkan tabel ini terlihat bahwa nilai jerapan P maksimum tertinggi diperoleh pada Andisol-Malang (384,62 mg/kg), diikuti oleh Ultisol-Lampung Tengah (344,83 mg/kg), Alfisol-Bitar (333,33 mg/kg) dan Vertisol-Ngawi (312,50 mg/kg). Demikian juga dengan nilai konstanta energi ikatannya, Andisol-Malang mempunyai nilai k tertinggi (0,65), diikuti oleh tanah Ultisol-Lampung Tengah (0,34), Alfisol-Bitar (0,27) dan Vertisol-Ngawi (0,13).

Tabel 4. Nilai jerapan maksimum (b) dan konstanta energi ikatan (k) pada empat ordo tanah.

<table>
<thead>
<tr>
<th>Ordo Tanah</th>
<th>b</th>
<th>k</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alfisol</td>
<td>333,3</td>
<td>0,27</td>
</tr>
<tr>
<td>Vertisol</td>
<td>312,5</td>
<td>0,13</td>
</tr>
<tr>
<td>Andisol</td>
<td>384,6</td>
<td>0,65</td>
</tr>
<tr>
<td>Ultisol</td>
<td>344,8</td>
<td>0,34</td>
</tr>
</tbody>
</table>

Mekanisme Reaksi Jerapan Fosfat

Berdasarkan komponen mineral reaktif yang menjadi penyusun utama pada empat ordo tanah tersebut diperkirakan mekanisme reaksi jerapan P berjalan sebagai berikut:

1) Mekanisme reaksi jerapan fosfat oleh Vertisol

sebagai jembatan. Sehingga bentuk kompleks yang terjadi dapat dituliskan sbb:

\[
\begin{align*}
\text{Ca}^{2+} & \ldots \text{HPO}_4^{2-} \\
\text{Ca}^{2+} & \ldots \text{H}_2\text{PO}_4^-
\end{align*}
\]

2). Mekanisme reaksi jerapan fosfat oleh Andisol

\[
\begin{align*}
\text{Al-OH} + \text{H}_2\text{PO}_4^- & \rightarrow \\
\text{Al-} & \ldots \text{H}_2\text{PO}_4^- + \text{OH}^-
\end{align*}
\]

3). Mekanisme jerapan fosfat oleh Alfisol dan Ultisol

Dolui and Dasgupta (1998) mengategorikan Alfisol sebagai tanah Ferruginous karena tanah ini yang banyak mengandung besi (Fe). Peran senyawa besi oksida paling menonjol terutama pengaruhnya terhadap warna tanah dan jerapan hara P. Ultisol merupakan tanah yang lebih lanjut perkembangannya dibandingkan Alfisol, sifatnya lebih masam sehingga disamping Fe-oksida, Al-oksida juga berperan dalam proses jerapan anion pada tanah. Havlin et al. (2005) menjelaskan bahwa pada tanah masam ion fosfat terjerap dalam bentuk H_2PO_4^- dan atau HPO_4^{2-} oleh permukaan Fe/Al oksida melalui pertukaran ligan dengan OH^- dan atau OH_2^-. Species H_2PO_4^- yang terjerap Fe-oksida dan membentuk ikatan Fe-O-P kemungkinan masih dapat terdesorpsi ke dalam larutan tanah. Apabila ada dua Al-O yang berikatan dengan H_2PO_4^- yang membentuk kompleks binuclear-bidentate bersifat lebih stabil. Mekanismereaksinya dapat digambarkan sbb:
Kesimpulan

Daftar Pustaka

