Prediction of The Water Content at Field Capacity From Disturbed Soil Samples

Pemanfaatan Tumbuhan Perintis dalam Proses Rehabilitasi Lahan Paskatambang di Bengkulu

Aplikasi Sistem Informasi Geografi Untuk Evaluasi Penggunaan Lahan Terhadap Arahan Pemanfaatannya di DAS Waijari

Karakteristik Tanah-Tanah Volkan Muda dan Kesesuaian Lahannya Untuk Pertanian di Halmahera Barat

Ketersediaan Fosfat, Serapan Fosfat, dan Hasil Tanaman Jagung (Zea mays L.) Akibat Pemberian Bokashi Ela Sagu Dengan Pupuk Fosfat Pada Ultisols

Upaya Perbaikan Pengelolaan Lahan Pada Beberapa Tipe Luapan Untuk Meningkatkan Produktivitas Jagung di Lahan Rawa Pasang Surut

Kandungan C-Organik dan N-Total Pada Seresah Dan Tanah Pada 3 Tipe Fisiognomi (Studi Kasus di Wanagama I, Gunung Kidul, DIY)

Teknologi Rehabilitasi Lahan Gambut Bongkor Untuk Budidaya Padi

Morphology and Chemical Structure Of Allophane

Diterbitkan oleh
FAKULTAS PERTANIAN UNIVERSITAS GADJAH MADA YOGYAKARTA
JURNAL ILMU TANAH DAN LINGKUNGAN

Adalah jurnal untuk publikasi penelitian, review dan ulasan ilmiah dalam semua cabang ilmu tanah, antara lain: pedogenesis, morfologi dan klasifikasi tanah, mineralogi, fisika dan kimia tanah, kesuburan tanah, ilmu pertanian, biologi tanah, dan lingkungan.

Penanggung Jawab
Dekan Fakultas Pertanian UGM

Wakil Penanggung Jawab
Ketua Jurusan Tanah Fakultas Pertanian UGM

Ketua Dewan Redaksi
Dr. Ir. Syamsul Arifin Siradz, M.Sc.

Redaksi Pelaksana
Dr. Ir. Eko Hanudin, M.S.
Ir. Sri Nuryani Hidayah Utami, M.Sc.
Nasih Widya Yuwono, S.P., M.P.
Sulakhu/din, S.P., M.P.

Administrasi
Sunarto

Alamat Redaksi
Fakultas Pertanian UGM. Jl Flora, Bulaksumur. Yogyakarta, 55281
Telepon/Fax: 62-274-548814
e-mail: jitungm@gmail.com, website: http://soil.faperta.ugm.ac.id

JURNAL ILMU TANAH DAN LINGKUNGAN
Diterbitkan secara berkala oleh Fakultas Pertanian Universitas Gadjah Mada

Biaya langganan sebesar Rp 50.000,- (per edisi), belum termasuk ongkos kirim. Uang langganan dapat dikirimkan kepada: Abdul Syukur, rekening nomor 3827 9535 BNI Cabang UGM Yogyakarta
KATA PENGANTAR

Puji syukur ke hadirat Tuhan Yang Maha Esa karena Jurnal Ilmu Tanah dan Lingkungan volume 9 nomor 1 dapat diterbitkan. Pada edisi ini ada 9 judul tulisan yang membahas masalah di bidang fisika, rehabilitasi lahan, pedologi, kesuburan, pengelolaan lahan dan mineralogi.


Yogyakarta, Agustus 2009

Dewan Redaksi
MORPHOLOGY AND CHEMICAL STRUCTURE OF ALLOPHANE

Eko Hanudin

Laboratory of Soil Chemistry and Fertility, Department of Soil Sciences,
Faculty of Agriculture, Gadjah Mada University. E-mail: ekohanudin@ugm.ac.id

Abstract

Morphology and chemical structure of allophane which was found in soils developed from volcanic ash soils or pumice, has been established. High resolution electron micrographs have shown that the allophane consists of hollow spheres or polyhedra 3.5-5.0 nm in diameter with a wall thickness estimated to be about 0.7 nm. The wall of the hollow sphere, nano-ball, has some holes (defects) with diameter of 0.3-0.5 nm. Chemical structure of allophane is characterized by short-range order and the predominance of Si-O-Al bondings. Chemical composition of allophane varies ranging in the Si/Al atomic ratio from about 0.5 to 1. Allophane with Si/Al ratio of 0.5 is a fundamental structure which is composed of gibbsite [Al(OH)$_3$] sheet with SiO$_4$ tetrahedra attaching on it, and has hollow spherical morphology to locate the SiO$_4$ tetrahedra inside of the sphere. Allophane with the Si/Al ratio more than 0.5 has some condensed SiO$_4$ tetrahedra weakly bonded to its structure.

Introduction

The mineral components of organo-mineral complexes in soils are generally better known than the organic components. For example, much is known of the structure, surface properties, and abundance of clay minerals (Brown et al., 1978). Less is known, however, of the nature, properties and abundance of amorphous, inorganic soil constituents, which are particularly reactive with organic matter. Occurrence of amorphous (such as imogolite, and allophane) to cryptocrystalline Al-Si complexes in some spodosols or in andisol were recognized only few years ago.

Allophane could be defined as a group of short-range ordered clay minerals that contain silica, alumina, and water in chemical combination (Parfitt and Childs, 1988). Allophane has been found in a wide range of soils including those formed in volcanic ash (Andepts), Spodosols, and podzolized soils (Lowe, 1986; Wada, 1987), and shallow stony brown soils (Ochrepts) (Parfitt and Webb, 1984). Occurrence of allophane was also identified by Wells et al. (1977), as a deposit in the streambed below the outlet of Silica Spring on Mt Ruapehu, New Zealand. Henmi (1979) also found it in a stream-deposit from Ehime Prefecture and from Shishigana at the northern foot of Mt. Chokai (Inoue et al., 1980), Japan. Genesis and characteristics of allophane may have been influenced by an environmental condition where it exists.

Morphology and chemical structure of allophane

Morphology and chemical structure of allophane which was found in soils developed from volcanic ash soils or pumice, has been established (Henmi, 1980; Henmi and Wada, 1976; Shimizu et al., 1988). High resolution electron micrographs have shown that the allophane consists of hollow spheres or polyhedra 3.5-5.0 nm in diameter (Henmi and Wada, 1976) with a wall thickness estimated to be about 0.7 nm (Wada, 1979). The wall of the hollow sphere, nano-ball, has some holes (defects) with diameter of 0.3-0.5 nm (Paterson, 1977; Wada and Wada, 1977). Chemical structure of allophane is characterized by short-range order and the predominance of Si-O-Al bondings (van Olphen, 1971; Wada, 1977). Chemical composition of allophane varies ranging in the Si/Al atomic ratio from about 0.5 to 1 (Henmi and Wada, 1976). Allophane with Si/Al ratio of 0.5 is a fundamental structure which is composed of gibbsite [Al(OH)$_3$] sheet with SiO$_4$ tetrahedra attaching on it, and has hollow spherical morphology to locate the SiO$_4$ tetrahedra inside of the sphere (Henmi, 1985; Parfitt and Henmi, 1980). Allophane with the Si/Al ratio more than 0.5 has some condensed


SiO₄ tetrahedra weakly bonded to its structure (Parfitt et al., 1980). The chemical structure of allophane is schematized at Fig. 1-2. The figure depicts some pores or defect part on allophane structure where resulting in Al–OH and Al–OH₂ groups exposed, whereas inside part of allophane shows silanol groups (Si–OH). The two functional groups play an important role in governing physico-chemical chemical characteristics on allophane. Base on the morphology (ball shape) and the size (nano level) of allophane, we introduce a new term, nano-ball (shaped) allophane. So, in this paper, the term allophane always refers to nano-ball shaped allophane.

The variability of both shape and size of allophane particles probably arises from aggregation of the spherules with themselves and with other soil constituents. An X-ray fluorescence spectroscopy showed that allophanic clays contain Al in both 4- and 6-fold coordination and that the content of Al in 4-fold coordination increases from 20 to 50% of total Al as the SiO₂/Al₂O₃ ratio increase (Henmi and Wada, 1976; Campbell et al. 1977). Parfitt and Henmi (1980) found that the Al in allophanes with low SiO₂/Al₂O₃ ratio was almost entirely in 6-fold coordination. Study by using ²⁷Al nuclear magnetic resonance (NMR), Childs et al. (1999) observed 5-coordination Al in Silica Spring allophane. It was supposed that the 5-coordination Al is associated with the edges of fragments of incomplete octahedral sheets that are bonded to disordered, though more complete, curved tetrahedral sheet in the primary particles of this allophane.

Fig. 1-2 Scheme of chemical structure of a unit particle of nano-ball shaped allophane (A: molecular morphology in section; B: atomic arrangement near the hole of hollow particle; C: atomic arrangement in the cross section of allophane particles) (Parfitt and Henmi, 1980).

As noncrystalline mineral, allophane gives an amorphous features in X-ray diffraction pattern, with the maximum band vary from 1.23 to 1.45 nm, depending on its Si/Al ratio (Wada, 1989). For thermal characteristics, allophane generally shows a
broad endothermic peak between 50 and 300°C and an exothermic peak between 800–1000°C due to continuous dehydration and dehydroxylation, and to the formation or nucleation of mullite and/or gamma-alumina, respectively (Mitchell et al., 1964; Wada and Harward, 1974; Fieldes and Claridge, 1975; Wada, 1989). Infrared spectra of allophanne appear in three regions: 2700–3700, 1400–1800, and 650–1200 cm⁻¹. The absorption bands in the first and second regions are due to the OH stretching and bending vibrations of SiOH, AlOH, and/or adsorbed water. The HOH deformation vibration of adsorbed water appears at 1630–1640 cm⁻¹ (Inoue et al., 1980). The absorption bands in the third region are attributed mainly to SiO (AlO) stretching vibrations and partly to SiOH (AlOH) deformation vibrations (Wada, 1989).

Conclusion

High resolution electron micrographs have shown that the allophanne consists of hollow spheres or polyhedra 3.5-5.0 nm in diameter with a wall thickness estimated to be about 0.7 nm. The wall of the hollow sphere, nano-bail, has some holes (defects) with diameter of 0.3–0.5 nm. Chemical structure of allophanne is characterized by short-range order and the predominance of Si-O-Al bondings. Chemical composition of allophanne varies ranging in the Si/Al atomic ratio from about 0.5 to 1.

References


