EDITOR’S NOTE

Thank God for the publication of the Proceeding of the second International Conference on Chemical Sciences (the 2nd ICCS 2010). In term of the number of participants, the seminar with theme of “Chemistry Goes Green” was a successful one. There were roughly 200 participants in the Seminar.

We really regret for the postponement of the Proceeding due to unpredicted circumstances especially that of Merapi eruption on October-November 2010. However, we do hope that the delay does not affect the authors to do any kind of ensuing activities.

There were initially 5 plenary papers and 177 regular papers presented in the Seminar. Among those presented works, 96 papers were submitted to the Editor in complete format. The Editor together with the Editor of the Indonesian Journal of Chemistry (IJC) nominated 5 of them to be published in July 2011 edition of the Indonesian Journal of Chemistry. The papers chosen to be published in IJC were selected based on the quality and potential to give a significant impact to the development of the chemical sciences.

Based on the contents, the papers appeared in this Proceeding are grouped into five concentrations that are Environmental and Green Chemistry (25 papers), Chemistry in Life Science and Chemical Biology (21 papers), Information Technology in Chemical Sciences and Computational Chemistry (12 papers), Innovation in Material Chemistry, Supramolecular Chemistry and Nanotechnology (20 papers) and Innovation in Methods, Technique and Instrumentation of Analytical Chemistry (18 papers). The distribution of the papers into those areas was more or less comparable.

In the process of the publication of this Proceeding, we did our best to edit the papers to match a good standard of scientific publication.

Finally, we are indebted to all parties who helped in preparing the Proceeding. We wish this Proceeding would considerably contribute to the development of chemistry and those related sciences.

Editor in Chief
BOARD OF EDITOR’S

• Prof. Dr. Jumina
• Dr. Dwi Siswanta, M.Eng.
• Dr. Indriana Kartini
• Sri Sudiono, M.Si.
ANALYTICAL CHEMISTRY

Validation of RFLP-Combined PCR Technique to Detect Porcine Contamination in Meatball (Halal Analysis)
Tri Joko Raharto, Sismindari

Investigation on Morphology and Properties of The Aggregation of Natural Phospholipids in Aqueous System Using Cryo-Tem
D. Hudiyanti, T. J. Raharto, Narsito, S. Noegrohati

Separation and Determination of Elemental Concentrations of Copper from Chalcopyrite Rock With A Solid-Liquid Extraction Method
Iwan Hastiawan, Yusi Deawati, Nitis Aruming Firdaus

Developing of A Low Cost C-Pd Electrode and Characterisation of The Electrode Response to Nitrous Oxide
Siswoyo, IF Hanim, AO Roseyda, Asnawati, Zulfikar

Modification and Aplication of Predictive Model for Representing Various Products from Cracking of Vegetable Oils
B.H. Susanto, G. Gautama

Fingerprint Analysis of Caesalpinia Sappan L. Using Thin Layer Chromatography
Mohamad Rafi, Irmainda Datubara, Mitha Herdiana

Synthesis and Characterization of Binuclear Complex Compound of Iron(III)-Nickel(II) with Ethylenediamine and Oxalato as Ligands
Yusi Deawati, Iwan Hastiawan, Evana Firdauzi

Chiral Ionic Cyclodextrin for Enantioseparation by Capillary Electrophoresis
Wayan Muderawan
Determination of Pm2.5'S Heavy Metals in Bandung by Particle Induced X-Ray Emission (PIXE)
Muhayatun Santoso, Diah Dwiana Lestiani, Andreas Markwitz

Rapid Test Gold Immunochromatographic Assay Using Crude of Excretory Secretory Antigens for Detection of Immunoglobulin G Against Toxoplasma Gondii
Lale Budi Kusuma Dewi, Ganden Supriyanto, Mufasirin

Improvement in The Quality of Star Fruit (Averhoa Carambola L.) During Room Temperature Storage by Nano-Packing
Riskiono Slamet

Catalytic of Soy Polyol Synthesis Precursor for Flexible Foam Polyurethane
Flora E. Firdaus

Molecularly Imprinted Polymetacrylic Acid Modified Glassy Carbon as A Voltammetric Sensor on The Uric Acid Analysis
Miratul Khasanah, Mudasir, Aqus Kuncaka, Eko Sugiharto, Ganden Supriyanto,
Fransisca N. Tambunan

Electro-Polymerisation of Bio-Oil
Aqs Kuncaka and Sherly Ledoh

Production and Characterization of Cholesterol Biosensor with Immobilization Technique Using Cholesterol Oxidase onto Polyaniline Membrane Conducting Chitosan
Belnis, Siti Wafiroh, Ganden Supriyanto

Analysis of Melamine in Milk with Adsorptive Stripping Voltammetry Methods Using by Glassy Carbon Electrodes.
Mujj Harsini, Handoko Darmokoesoemo, Kartika Sari Wijayani

Determination of Reference Value for Reference Material Candidate of Cobalt And Boron Standard Solution
Nuryatini
VALIDATION OF RFLP-COMBINED PCR TECHNIQUE TO DETECT PORCINE CONTAMINATION IN MEATBALL (HALAL ANALYSIS)

Tri Joko Raharjo¹,²* and Sismindari²

¹Department of Chemistry, Universitas Gadjah Mada, Jl. Kaliurang Km 5,5 Sekip Utara Yogyakarta 55281, Indonesia
²Integrated Research and Testing Laboratory, Universitas Gadjah Mada, Jl. Kaliurang Km 5 Sekip Utara Yogyakarta 55281, Indonesia

* Corresponding author, tel/fax : +62-274545188, email: trijr_mipa@ugm.ac.id

ABSTRACT

Porcine contamination was one important issue in food certification for Halal. Here, we reported PCR combined with RFLP technique to detect porcine contamination in meatball. Various concentration of pork was added to beef in preparation of the meatball. Mithocondrial DNA was then isolated from the meatball followed by PCR using published primers that amplified cytB gene. A ± 350 bp DNA fragment was resulted from PCR. PCR product was targeted for digestion by means of BamHI and BseDI enzymes. Since these enzymes cut porcine cytB gene but does not cut beef cytB gene, all meatball contain porcine contamination give small DNA fragment (± 220 and 130 bp) in electrophoresis analysis, while the absent of these DNA fragment leading to conclusion that meatball sample free from porcine. This method has been validated to detect up to 1% of porcine present in the meatball.

Keywords: porcine, halal, PCR, RFLP

INTRODUCTION

One of the major issue in the field of food safety is determination of food authenticity (authentication) and forgery detection [1-3]. In Moslem society mixing food products either meat or non-meat products with ingredients such unlawful oil and pork becomes issues that often develops since it related to the halalness of the foods. Technology is needed to justify the food contamination by porcine and necessary for the halal certification of status of products.

One approach to detect porcine contamination in food is by means of DNA test [4]. Several techniques has been developed regarding meat contamination, such as multiplex PCR assay [5], PCR-based finger printing [6] and real time PCR [7]. The most common method was PCR method combined with digestion with restriction enzyme (PCR-RFLP) [4,8].

PCR-RFLP method for porcine detection can be performed by amplification of gene encode cytochrome b on mtDNA. Several PCR primers for this amplification have been published. One of them amplifies from position 70 to 429 of the gene result in DNA fragment with 359 bp length. Restriction the fragment with BamHI and BseDI result in fragment as shown at Fig. 1 and table 1. From table 1, specific length of DNA fragments, 288, 171 bp for BseDI digestion and 213, 115 bp for BamHI digestion, present only if the digested fragments are porcine DNA or contain porcine DNA. Using mtDNA also gives additional advantage since mtDNA present in high concentration in the meat [9]. Erwanto et al. (2007) [10] has reported the performance this methods to detect porcine contamination in the fresh meat mixture. In case of food product the performance of the method could be different since the additional food materials.

<table>
<thead>
<tr>
<th>CytB fragment, 359</th>
<th>BseDI (bp)</th>
<th>BamHI (bp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cow</td>
<td>320, 39</td>
<td>328, 31</td>
</tr>
<tr>
<td>Sheep</td>
<td>320, 39</td>
<td>328, 31</td>
</tr>
<tr>
<td>Chicken</td>
<td>328, 31</td>
<td>213, 115, 31</td>
</tr>
<tr>
<td>Pig</td>
<td>288, 171</td>
<td>213, 115, 31</td>
</tr>
</tbody>
</table>

The paper report the performance of the methods in detect porcine contamination in
meatball, a food product consisting of meat and flour. The performance tested included specificity and limit detection of the methods.

EXPERIMENTAL SECTION

Materials
Beef and pork were purchased from local market in Yogyakarta. DNA isolation was performed by means of NucleoSpin® Food Kits (Clontech). PCR was employed by illustra™puReTaq Ready-To-GoPCR Beads (GE Healthcare) with primer forward 5'-CCATCAAACATTTCATCATGATGAAA-3' and primer reverse 5'-GCCCTCAGAATGATATTTGTCCTCA-3' synthesized by 1stBASE. Enzymes BseDI and BamHI were from Fermentas.

Instrumentation
Main instrument for this experiment was PCR machine Genecycler 10432 (Biorad), and set of electrophoresis apparatus for gel agarase electrophoresis.

Procedure

DNA Isolation from Meatball
The meatball with various concentration of porcine meat was prepared according to common cooking recipes. DNA isolation was performed according to kits booklet (GE,2007) with a minor modification. About 200 mg of meatballs were homogenized with a mortar and pestle under liquid nitrogen. The powdered, homogenized tissue were then transferred to microcentrifuge tube and extracted with of Buffer CF helped by Proteinase K by incubation at room temperature 24 hrs. The next steps were carried out exactly according to kits booklet. The isolated DNA was checked by agarose gel electrophoresis and estimated its concentration by means of UV spectrophotometer.

PCR of cytB DNA Fragment
PCR reaction was started by adding approximately 100 ng isolated DNA, 10 pmole of each forward and reverse primer to PCR bead tube. The tube contents were then mixed by gently flicking the tube with a fingers followed by vortex and short centrifugation. The tubes were then put into thermalcycler machine and programmed for 30 cycles reaction with condition: denaturation at 95 °C for 1 min, annealing at 55 °C for 1 min and extension at 72 °C for 1 min. After last cycle an extra extension cycle was performed for 10 min. The PCR product was checked with agarose gel electrophoresis and estimated its concentration by means of UV spectrophotometer.

Digestion with BseDI and BamHI
For BamHI digestion, 0.5 ng PCR fragment was mixed with 2 µL BamHI buffer 10x, 20 U of BamHI enzyme and added with nuclease free water to final volume 20 µL. The mixture was incubated at 37 °C for 24 hrs. For BseDI digestion 0.5 ng PCR fragment was mixed with 2 µL BseDI buffer 10x, 20 U of BseDI enzyme and added with nuclease free water to final volume 20 µL. The mixture was incubated at 55 °C for 24 hrs.

RESULTS AND DISCUSSION

Specificity of the Method
Two type of meatball, free-porcine meatball (beef meatball) and pork meatball were used for specificity test. The methods will categorized as specific if no interference in the RFLP result, meaning typical restriction fragment (288, 171 bp for BseDI digestion and 213, 115 bp for BamHI) only present on pork meatball but not on free-porcine meatball. Figure 2 shows electrophoresis result of PCR of both meatball. The size of the fragments is same at 359 bp.

![Figure 2. Electrophoresis of PCR product. (1) DNA marker, (2) Beef meatball (MB), (3) Pork Meatball](image-url)

The product of digestion of PCR fragment with digestion enzymes was shown at Figure 3.

The result shows that typical restriction fragment for porcine only present on pork meatball and not present at beef meatball. Based on this result, the method has good specificity porcine in the meatball.
Limit of Detection

Since the present of the porcine in the meatball could be coincident i.e. due to preparation of pork meatball and beef meatball using same equipment, the limit detection of the method become important. The contamination of porcine up to 1% was tested, since in most cases pork is added to meatball in purpose, so the 1% value is more than enough to overcome the problem.

PCR of meatball sample with various porcine contamination result in same fragment at 359 bp, as shown at figure 4. Restriction of the PCR fragment gives no typical porcine fragment for negative control (beef meatball). However, meatball sample with only 1% pork on meat component gives as clear as positive control (pork meatball) for the present of porcine typical fragment. The results are shown at Figure 5. Based on the result the method could still detect porcine contamination up to 1% and possibly lower that 1% since the digestion result of 1% porcine contaminated sample still gives clear porcine typical fragment.
Application of the Method to test commercial meatball

Samples from three well known meatball restaurant in Yogyakarta were tested. PCR result and RFLP analysis of the samples are shown at Figure 6 and Figure 7, respectively. Based on the result it can be concluded that the samples from the restaurant are free from porcine contamination although none of them is halal certified.

CONCLUSION

PCR of cytB fragment followed by RFLP analysis using BseDI and BamHI restriction enzymes could effectively detect porcine contamination in meatball with high specification. The capability of the method has been tested up to 1% contamination. The method has also been applied to test sample of commercial meatball result in no contamination even in the non certified meatball.

ACKNOWLEDGEMENTS

This work was financially supported by LPPT UGM, multidisciplinary research fund from 2010 annual budget (RKAT 2010). Surajiman, Istini, Sari (student) were acknowledged for laboratory works.

REFERENCES