The 5th INTERNATIONAL SEMINAR ON TROPICAL ANIMAL PRODUCTION
“Community Empowerment and Tropical Animal Industry”

PROCEEDINGS

Oktober 19 – 22, 2010
Yogyakarta, Indonesia

Organized by:
Faculty of Animal Science, Universitas Gadjah Mada Yogyakarta
Indonesian Society for Sustainable Tropical Animal Production [ISSTAP]
INDONESIA, 2010
Community Empowerment and Tropical Animal Industry

This publication is issued as the Proceedings of the Fifth International Seminar on Tropical Animal Production held in Yogyakarta, Indonesia October 19-22, 2010.

Published by:

Faculty of Animal Science
Universitas Gadjah Mada
Jl. Fauna 3, Bulaksumur
Yogyakarta, Indonesia 55281
www.fapet.ugm.ac.id

ISBN: 978-979-1215-21-3

© Faculty of Animal Science, Universitas Gadjah Mada
No part of this publication may be reproduced or transmitted in any forms or by any means, electronic or mechanical, now known or heretofore invented, without permission in writing form the publisher.
PREFACE

The Faculty of Animal Science, Universitas Gadjah Mada, is pleased to have The 5th International Seminar on Tropical Animal Production, held at our campus in Yogyakarta, on October 19-22, 2010. The previous seminar has been successes in discussing various issues at that time. Agriculture is the mainstay of the people of most tropical countries, where billion of people live. Within agriculture, a high priority is placed on animal rearing, since farm animals play important roles in the economies of the countries. The present seminar on ‘Community Empowerment and Tropical Animal Industry’ follows on in a series on tropical animal production.

The conference was aimed to gather educators, academics, researchers, industry practitioners, representatives of professional industry associations and non-government organizations in the field of animal science, to discuss issues and concerns confronting the various stakeholders in responding to the community empowerment and tropical animal industry. The conference further aimed to provide an interdisciplinary forum to facilitate the exchange of information through research and networking amongst the conference participants to foster collaborative research and academic exchanges.

The conference featured more than 200 panel, paper and poster presentations, and attendees, by animal science academics and practitioners from more than 20 countries. All the full papers and abstracts in these proceedings have been subjected to a double blind refereeing process coordinated by selected academics. The success of an international seminar with published proceedings depends on the collective team efforts of many people. We owe a significant debt of gratitude to many individuals. We wish to take this opportunity to thank these individuals who have contributed to the success of this conference. First, we would like to thank the paper and panel presenters as well as the conference session chairs for their contribution of expertise, time and efforts. We would also like to extend special thanks to the Paper Reviewers and Editors who have spared their precious time and efforts to review and edit the papers. The names of the Paper Editors are listed on the following page. The review and editing process has been a complex one given the fact that English is not the native language of many of the delegates who submitted papers for this seminar. With a number of papers it has been necessary to focus, at times, more upon intent and meaning than grammatical correctness.

We also commend the hard work done by the conference steering and organizing committees composed of the academic, administrative staff and students of the Faculty of Animal Science, Universitas Gadjah Mada.

Prof. Dr. Krishna Agung Santosa
Editor in Chief
REPORT OF ORGANIZING COMMITTEE

Good Day,
His excellency, Minister of Agriculture, Republic of Indonesia
The honourable Rector of Universitas Gadjah Mada,
Distinguished guests, participants, ladies and gentlemen,

On behalf of the organizing committee, I would like to extend our warmest welcome all supporters, presenters, and participants to the Fifth International Seminar on Tropical Animal Production 2010 in Yogyakarta, Indonesia, and indeed it is a great pleasure to see you all in our campus of Universitas Gadjah Mada, Yogyakarta.

This is a very special international event that held by Faculty of Animal Science, Universitas Gadjah Mada, Indonesia. The International Seminar on Tropical Animal Production (ISTAP) is conducted every four years. The first, second, third and fourth were conducted in 1994, 1998, 2002, and 2006, respectively. The theme of this year 2010, the 5th ISTAP is “Community Empowerment and Tropical Animal Industry”.

This forum is attended by more than 200 delegates representing 23 countries (Australia, Cameroon, Denmark, Ethiopia, India, Iran, Japan, Kuwait, Malaysia, Pakistan, Philippines, The Netherlands, Timor Leste, Nepal, Sri Lanka, Nigeria, Bhutan, Scotland, Thailand, USA, and Indonesia. There were over 170 abstracts submissions and 150 papers were accepted and will be presented at the forum. We are confident that the 5th ISTAP will be an excellent opportunity for all participants to share and learn from each other. We hope that this ISTAP will be a success and that your stay in Indonesia will be a pleasant one.

I would like to express my sincere appreciation to the keynote speaker His excellency Ir. Suswono, MMA, Minister of Agriculture, Republic of Indonesia, and the invited speakers, Prof. Dr. Dale R. ZoBell, Prof Dr. E.R. Orskov, Prof. Dr. Mogens Lund, Dr. Henning Otte Hansen, Ms. Fokje Steenstra, Mr. Vinod Ahuja, Dr. Yanin Opatpatanakit, Prof Dr. Ryo Akashi, Prof. Dr. Michio Muguruma, Prof. Dr. Tohru Suzuki and Dr. Ferry Purnama.

Furthermore, my great thanks go to the sponsors of the conference, i.e. Bank Indonesia, Bank Negara Indonesia, Bank Rakyat Indonesia Syarria, PT. Jackson Niagatama, PT. Peksi Guna Raharja, CV. Restu Bumi, Livestockreview.com, PT. Nasmoco and Murni Bakery.

I would also like to acknowledge the support in the organization of the conference of ABAD Entertainment. Similarly, I also express my sincere gratitude for the hard work and dedication displayed by our paper reviewers, editors, committee and students of Universitas Gadjah Mada.
Again, we would like to welcome you all to the Fifth ISTAP for Participants, Delegates, and Special Guests in Yogyakarta, Indonesia
Thank you.

Dr. Budi Guntoro
Chairman
WELCOME ADDRESS
DEAN OF FACULTY OF ANIMAL SCIENCE, UNIVERSITAS GADJAH MADA

Assalamu’alaikum warahmatullahi wabarakaatuh,

Honorable the Minister of Agriculture, Republic of Indonesia.
Your excellency Rector of Universitas Gadjah Mada
Distinguish guests, ladies and gentlemen

Let us thank full God almighty, that because of his amazing grace, we are all able to meet together at this Internationnal Seminar. On behalf of the Faculty of Animal Science, Universitas Gadjah Mada, it is my great privilege and pleasure to have you in Universitas Gadjah Mada.

Faculty of Animal Science, one among of 18 faculties in UGM, has been recognized as the prime educational institution in Indonesia, providing teaching, research and extension programs in science and animal industry including animal nutrition, animal production, technology of animal products and livestock social economics.

This is the fifth International Seminar on Tropical Animal Production (5th ISTAP), and the like the first until the fourth ISTAP, is the agenda of own faculty to be conducted once after every four years. The aim of this respective will contemplate in-depth community empowerment and animal industry problem in the tropical developing countries. The big problem which are constituting a challenge in tropical developing countries, particularly in Indonesia, among other things are the economic transformation and the trend of economic globality.

Finally, on behalf of the Faculty, I extend my sincere gratitude to honorables Minister of Agriculture the Republic of Indonesia, for your kind and generosity to include this event on your busy time schedule and be with us to give keynote speech and talk policy matters. We have proud and full of honourable to have invited speakers from all around the world as well as all participants derived from many universities, research institutes, related governmental offices and industries in Indonesia. Four-day conference hopefully would yield valuable solution and discussion in livestock production with holistic management of local resources could be successfully. By this opportunity, I would like to thank all parties and members of both Steering and Organizing Committees, who have devoted their time to make this seminar success. Allow me for this event, to request Prof. Dr. Sudjarwadi to officially open this seminar. Thank you.

Wassalamu’alaikum warahmatullaahi wabarakaatuh.

Prof. Dr. Tri Yuwanta
Dean
OPENING REMARKS
RECTOR OF UNIVERSITAS GADJAH MADA

Assalaamu’alaikum warahmatullaahi wabarakaatuh

The honorable Ministry of Agriculture Republic of Indonesia
Distinguished Guests, Participants of the seminar, and Ladies and Gentlemen.

It is my pleasure to welcome all of you to the campus of Universitas Gadjah Mada to attend the 5th international Seminar on Tropical Animal Production. This seminar is more or less a respond to the recommendation forwarded at the 4th International Seminar on Tropical Animal Production held in 2006.

Ladies and Gentlemen

Universitas Gadjah Mada on behalf of Faculty of Animal Science is very delightful to host this fourth yearly seminar. First of all, I would like to thank and express my appreciation to the Dean of Faculty of Animal Science and all members of the committee of the seminar who have been working very hard to make the seminar successful.

The large numbers of representative we have here from all around the world indicate that the interest generated in animal production is real and trying to affect the resources of rich and poor nations.

Secondly, on this significant occasion I would like to express as well sincere gratitude to the Minister of Agriculture, Ir. Suswono, MMA for your special speech.

The theme of fifth International Seminar on Tropical Animal Production is “Community Empowerment and Tropical Animal Industry”. Since animal production in the tropics has been developed rapidly in order to provide high quality food, however it still very much depends on science, technology, and resources from developed countries. Overseas depending resources make agriculture development difficult to be sustainable. It is urgent to concern and take responsibility for sustainable development of agriculture which integrates three main goals: environmental health, economic profitability and social economic equity.

This seminar will be hopefully being continued as a forum of researchers, specialists in animal science and technology for tropical countries. In our constant effort to improve the food production and technology for tropical countries, we very much depend on cooperatives efforts of scientists who have already improved livestock production in the region.

Finally, I do hope you enjoy very much this seminar and your stay in Yogyakarta. Thank you very much.

Wasslaamu’alaikum warahmatullaahi wabarakaatuh.

Prof. Dr. Sudjarwadi
Rector
LIST OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>PREFACE</td>
<td>iii</td>
</tr>
<tr>
<td>REPORT FROM ORGANIZING COMMITTEE</td>
<td>iv</td>
</tr>
<tr>
<td>WELCOME ADDRESS</td>
<td>v</td>
</tr>
<tr>
<td>OPENING REMARKS</td>
<td>vi</td>
</tr>
<tr>
<td>LIST OF CONTENTS</td>
<td>vii</td>
</tr>
<tr>
<td>PART I</td>
<td></td>
</tr>
<tr>
<td>PLENARY SESSION</td>
<td></td>
</tr>
<tr>
<td>1. Asian livestock: Opportunities, challenges and the response</td>
<td>1 - 5</td>
</tr>
<tr>
<td>Vinod Ahuja</td>
<td></td>
</tr>
<tr>
<td>2. Cattle extension programs and research for tropical agriculture</td>
<td>6 - 10</td>
</tr>
<tr>
<td>Dale R. ZoBell</td>
<td></td>
</tr>
<tr>
<td>3. The revolving fund system in sustainable community development</td>
<td>11 - 18</td>
</tr>
<tr>
<td>Grant Davidson, and E.R. Ørskov</td>
<td></td>
</tr>
<tr>
<td>4. Intensification of smallholder livestock production: Is it sustainable?</td>
<td>19 - 26</td>
</tr>
<tr>
<td>Hendrik M.J. Udo and Fokje Steenstra</td>
<td></td>
</tr>
<tr>
<td>5. The development of Danish agriculture and agribusiness: Lessons to be learned in a global perspective</td>
<td>27 - 35</td>
</tr>
<tr>
<td>Henning Otte Hansen and Mogens Lund</td>
<td></td>
</tr>
<tr>
<td>6. Genome research of gut bacteria, how to analyze and how to apply?</td>
<td>36 - 40</td>
</tr>
<tr>
<td>Tohru Suzuki, Kota Sakaguchi, and Kazumasa Yasui</td>
<td></td>
</tr>
<tr>
<td>7. Animal production in Thailand: Challenges and potentials in global market</td>
<td>41 - 49</td>
</tr>
<tr>
<td>Yanin Opatpatanakit</td>
<td></td>
</tr>
<tr>
<td>8. Improvement of forage quality by means of molecular breeding in tropical grasses</td>
<td>50 - 56</td>
</tr>
<tr>
<td>Takahiro Gondo, Genki Ishigaki, Yasuyo Himuro, Nafiul Umami and Ryo Akashi</td>
<td></td>
</tr>
<tr>
<td>9. Advance research in function and healthy food from animal products - antihypertensive peptides derived from meat protein hydrolysates</td>
<td>57 - 63</td>
</tr>
<tr>
<td>Michio Muguruma, Jamhari, Yuny Erwanto, and Satoshi Kawahara</td>
<td></td>
</tr>
<tr>
<td>SUPPORTING PAPERS</td>
<td></td>
</tr>
<tr>
<td>Animal Feed and Nutrition</td>
<td></td>
</tr>
<tr>
<td>1. Exploration of pathogenic and non-Pathogenic Fungi on Alfalfa (Medicago sativa L.)</td>
<td>64 - 67</td>
</tr>
<tr>
<td>Turrimi Yudiarti, Sumarsono, and Didik Wismu Widjajanto</td>
<td></td>
</tr>
<tr>
<td>2. Organic fertilizer application on performance and production of king grass in acid soil</td>
<td>68 - 71</td>
</tr>
<tr>
<td>Sumarsono, Syaiful Anwar, Didik Wismu Widjajanto, and Susilo Budiyanto</td>
<td></td>
</tr>
</tbody>
</table>
3. The effect of using earthworm (*Lumbricus rubellus*) meal additives as growth promoters on protein digestibility and performance of intestinal villi
 Hardi Julendra, Zuprizal, and Supadmo ... 72 - 78

4. Fermentation of Jatropha kernel cake (*Jatropha curcas L.*) using varieties of fungi on its chemical compositions, concentration of phloroester, and digestibility
 Fatmawati, Hari Hartadi, and R. Djoko Soetrisno 79 - 88

5. Effect of protected crude palm oil on rumen microbial activities and methane production
 Naffy C. Tiven, Lies Mira Yusiat, Rusman, and Umar Santoso 89 - 94

6. Fermentation parameters and total gas production of some rumen protected fat-protein
 Lilis Hartati, Ali Agus, Budi Prasetyo Widyobroto, Lies Mira Yusiat 95 - 98

7. Dietary energy utilization of Local Sheep fed complete feed consisting of agricultural and agro-industrial by-products
 E. Purbowati, C.I. Sutrisno, E. Baliarti, S.P.S. Budhi, W. Lestariana, A. Purnomoaidi, and M.S. Mubarok .. 99 - 103

8. Reduction of phytic acid and aflatoxin content of rice bran through fermentation
 Rhizopus spp. Combined with deproteinized-chitan waste addition
 Ahmad Sofyan, Ema Damayanti and Hardi Julendra 104 - 108

9. Implementation of fermented rice bran as flavor enhancer additive and its effect on feed utilization and cattle performance
 L. Istiqomah, A. Febrisiantosa, A. Sofyan, and E. Damayanti 109 - 114

10. The use of kune grass (sorghum plumosum var. Timorense) bioconverted with white-rot fungi (*Pleurotus ostreatus*) fed on Local Goat in East Nusa Tenggara

11. The use of local-fodder based supplement and agricultural by-product for cattle

12. The use of kune grass (sorghum plumosum var. timorense) to substitute king grass
 (*Penicillium purpuraphoides*) fed on Bali Cattle in East Nusa Tenggara
 T.O. Dami Dato, S. Ghunu, M.A. Hilakore, J.J.A. Ratuwaloe, and Y.L. Henuk 121 - 123

13. The use of zeolite in low protein diet added with critical amino acids to reduce pollution
 Candra Elia Puspasari, Wibandoyo, and Supadmo 124 - 148

14. Effects of substitution of Elephant grass by corn waste and coffee pulp as basal diet on nutrient intake and digestibility in young male Ongole crossbred cattle
 Dicky Pamungkas, Ristianto Utomo, Nono Ngadyono, and Muhammad Winugroho 129 - 134

15. Effect of lactic acid bacteria inoculants applications to the quality and chemical composition silage waste of carrot plant (*Daucus carota*)
 Badat Muwakhid ... 135 - 140

16. The content of phytoestrogen on legume plants
 Batseba M.W. Tiro, Swijjiyo Pramono, Hari Hartadi, Djoko Soetrisno, and
 Endang Baliarti ... 141 - 145

17. Chemical composition and digestibility (*in vitro*) of cocoa pod husk (*Theobroma cacao*)
 Fermented with *Aspergillus niger*
 F.F. Munier, H. Hartadi, and I.G.S. Budisatria 146 - 154
18. Intake and digestibility of feed in lamb of Sumatera composite breed when the commercial concentrate diet were substituted by gliricidia dan rice bran
 Dwi Yulistiani and Wisri Puastuti ... 155 - 158

19. Fermentative gas production of different feeds collected during wet and dry seasons when incubated with rumen fluid from Rusa Timur (Cervus timorensis)
 M. S. Arifuddin, R. Utomo, H. Hartadi, and Damry .. 159 - 164

20. Effect of fed complete feed plus on quality and milk production of dairy cow
 Ristianto Utomo, B.P. Widyobroto, L.M. Yusiati, R.A. Rihastuli, S.P.S. Budhi, and V.K. Dewi ... 165 - 170

21. In Vitro gas production of fermented cacao pod (Theobroma Cacao) added with cellulolytic inoculum from cattle rumen fluid
 Chusnul Hanim, L.M. Yusiati, and V.P. Budiyastuti .. 171 - 176

22. Hibiscus Schizopetalus as saponin source, reduce protozoa number and increase microbial protein synthesis in in vitro sheep rumen fermentation
 Asih Kuralawati and Naifiantul Umami .. 177 - 182

23. The effect of gliricidia or mixture of rice bran and capra meal supplementation on feed intake, digestibility and live weight gain of early weaned Bali Calves fed A, Mulato grass
 Marselyo, Muhammad Ilyas Mumu, and Yohan Rusiyanto 183 - 188

24. A comparison of feeding management practices of beef cattle smallholders in lowland and upland sites in East Java

25. The effect of ketepeng cina leaf (Cassia aida) as a source of anthraquinone, methanogenesis inhibitor agent on rumen microbial protein synthesis for beef cattle in Sedo Rukun farmer group
 Lies Mira Yusiati, Zaenal Bachrudin, Chusnul Hanim, and Lila Indriana 196 - 200

26. The effects of feed restriction severity on compensatory growth of goat kids in Bushahr Province, Iran
 Mahmoud Dashtizadeh, Azizollah Kamalzadeh, Mohammad Hadi Sadeghi, Amir Arsalan Kamali, and Abdolmeidi Kabirifard 201 - 207

27. Fermentation quality of king grass (Pennisetum Purpureoholodes) ensiled with epiphytic lactic acid bacteria and tannin of arachis
 B. Santoso, B. Tj. Hariadi, H. Manik and H. Abubakar .. 208 - 214

28. The effect of methionine on glutathion production to eliminate aflatoxin B1 toxicity
 Yunianta, Ali Agus, Nuryono, and Zuprizal .. 215 - 220

29. Rice bran fermentation technology and soya bean oil supplementation of transfer protection fatty acid omega-3 of unsaturated fatty acids content of milk dairy cow
 Sudibya ... 221 - 226

30. Growth performance and blood profile of african rat fish fed sweet potato (Ipomoea batatas) leaf meal
 Olaniyi Christianah Oludayo ... 227 - 229

31. Application of complete feed formulated from agriculture by-products with undergraded protein supplementation on beef cattle productivity
 Bambang Subhantanto, B.P. Widyobroto, I.G.S. Budisatria, Kustantinah, and R. Utomo .. 233 - 238
32. The effect of green tea extract (camellia sinensis) supplementation on blood profiles and lipid oxidation in broilers fed high pufa diet
 Isti Astuti, Supadmo, Sugeng Riyanto, Supriyadi .. 239 - 242

33. The role of lactic acid bacteria on silage duration process and rumen content silage quality
 Isnandar, R. Utomo, S. Chuzaeni, E. Sutarirnghi, and L.M. Yusiati 243 - 249

34. Replacing sucrose by corn grains: impact on nutrients utilization and weight gain in growing buffalo calves
 M.Nisa, M.Aasif Shalzad, and M.Sarwar ... 250 - 256

35. Nutrients utilization, nitrogen dynamics and weight gain in growing buffalo calves fed graded replacement of urea by corn steep liquor
 M.Aasif Shalzad, M.Nisa, and M.Sarwar ... 257 - 261

36. Production and nutritive value of mulberry hay as potential feed supplement for ruminants
 Z.A. Jelan and A.R. Alimon ... 262 - 265

37. The retention of copper in sheep fed palm kernel cake supplemented with molybdenum, molybdenum plus sulphur and zinc
 A.R. Alimon, R.A. Al-kirshi and Z.A. Jelan .. 266 - 268

38. Utilization of complete feed based on fermented rice straw for Australian commercial cross steer on carcass and meat quality
 Bambang Suwignyo, Ristianto Utomo, Yuny Erwanto and Ali Agus 269 - 273

39. The measurement of rate of passage using different pairs of alkane as markers for sheep fed hay or fresh grass
 A. Kustantinah, R.W. Mayes, and E.R. Orskov .. 274 - 281

40. Aflatoxin m1 excretion in the milk of tropical dairy cow fed contaminated aflatoxin b1 in the diet

Poultry Production

1. The interaction of dietary lysine and temperature on egg laying performance of broiler breeders
 Abdulameer Al-Saffar ... 286 - 290

2. Digestible methionine requirement for performance and carcass yield of broiler finisher
 N.G.A. Nulyantini ... 291 - 295

3. Resource use efficiency in poultry production in Bureti District, Kenya

4. In vitro evaluation of phylogenetic potential of seed from mango (Mangifera indica),
 moringa (Moringa oleifera) and sweet apple (Annona squamosa) for poultry
 Rusdi, Asriani Hasanuddin, Rosniati Arief .. 303 - 307

5. The effect of adding vitamin C and E in native chicken semen extender stored at temperature 4 °C on semen quality and egg fertility
 Widya Asmarawati, Ismaya, and Tri Yuwanta .. 308 - 313
6. The effects of single lactic acid bacteria probiotic supplementation on intestinal mucosa profile and immune response in broilers
 Bambang Ariyadi and Sri Harimurti ... 314 - 319

7. Identification of single nucleotide polymorphism of gen insulin-like growth factor binding protein 2 on growth of native chicken
 Sri Sudaryati, Jafendi HP Sidadolog, Wihanadoyo, and Wayan Tunas Arama 320 - 324

8. Cassava leaf meal inclusion in palm kernel meal diet could improve egg yolk color in post-molting native laying hens
 Adrizal, S. Fakhri, R. Murri, Yatno, T. Maranata, S. Asby, Yusrizal, and C. R. Angel ... 325 - 331

9. Egg production responses of laying hens to feed medicinal herbs after peak of production

10. Systems of poultry husbandry
 C.A. Bailey, S.Y.F.G. Dillak, S. Sembiring and Y.L. Henuk 335 - 341

11. Ovulation and oviposition patterns in quail (Coturnix Coturnix Japonica)
 S.Y.F.G. Dillak, A. Pigawahi, and Y.L. Henuk ... 342 - 345

12. Evaluation of tofu waste treated with fermentation and enzyme supplementation in broiler chickens
 B. Sundu, Baharuddin and M. Baxri ... 346 - 349

13. Influence of grit on performance of local chicken under intensive management system
 Jublin Franzina Bale-Therik, Cytske Sabana ... 350 - 353

14. The growth and productivity of selected kampung chicken
 Heti Resnawati and Tike Sartika ... 354 - 357

15. Effect of divergent selection body weight to egg production during the six generation and GH gene polymorphism qual (Coturnix coturnix japonica)
 Ning Setiati, J.H.P. Sidadolog, T. Hartatik and T. Yuwanta 358 - 363

16. Feeding management evaluation of duck farmer group in Brebes
 Hern Sasonoko ... 364 - 367

17. Heterosis and combining ability for body weight and feed conversion in four genetic groups of native chicken
 Franky M.S. Tehpere ... 368 - 373

18. The implementation of forced molting technology on rejected laying hens for the people discharged from employment (a case study at Duvet Village, Klaten, Indonesia)
 Ali Murysid Wahyu Mulyono, Sri Hartati, Ahimsa Kandi Sariri, and Engkus
 Ainul Yakin .. 374 - 379

19. Growth performance of Maleo birds (Macrocephalon maleo) by Means of feeding control in the captivity
 Hafisah, Tri Yuwanta, and Kustono .. 380 - 384

20. Egg production and quality of Kedu chicken based on plumage color that reared intensively
 Ismoiyowati, Dadang Mulyadi Saleh, Rosidi .. 385 - 390

21. Effect of indigenous lactic acid bacteria probiotics on broiler performance
 Sri Harimurti, Nasroedin, Endang Sutriswati Rahayu, Kurniasih 391 - 394
PART II

Livestock Production

1. Exterior characteristics of Kejabong goats kept by farmers
 I Gede Suparta Budisatria, Paujono, Ali Agus, Lies Mira Yusianti, and Sumadi 403 - 410

2. The effect of goat-sharing system on the performance of farmer groups raising etawah crossbred goats – a case study in ‘Sukorejo’, Girikerto, Turi, Sleman
 Yuni Suranindyah, Kustantinah, and E. R. Orskov ... 411 - 414

3. Growth and carcass production of Ongole grade cattle and Simmental Ongole crossbred cattle growing in a feedlot system
 Mateus da Cruz de Carvalho, Nono Ngadiyono, and Soeparno 415 - 422

4. Available herbage sustainability under soil and water conservation for development of small ruminants
 Sutarno, Sumarsono, Widiyati Slamet, Didik Wisnu Widjajanto 423 - 426

5. A study on some aspects of equine husbandry in the Punjab-Pakistan
 Arshad Iqbal, Asif Hameed, M. Youns, Bakht B. Khan and S. A. Bhatti 427 - 432

6. Feeding strategies to increase growth of early weaned Bali calves in East Java

7. Response of brahman crossbred cows and their calves, kept under semi-intensive and fed them on local fodder supplement in east Sumba Regency, East Nusa Tenggara Province

8. The relationship between heart-chest girth, body length and shoulder height, and liveweight in Indonesian goats
 Asmuddin Natsir, Mawardi A. Asja, Nasrullah, Yusnasari, A. Nurhayu, Peter
 Murray, and Roy Murray-Prior ... 441 - 445

9. Growth performance of Ongole grade (Peranakan Ongole) cattle in Indonesia
 Budi Haryanto and Dicky Pamungkas .. 446 - 451

10. Growth of carcass and carcass composition of different slaughter weight of local ram

11. Postpartum productivity of Simmental-Ongole crossed cows of the first generation compared to Ongole crossed cows kept by farmers
 E. Baliarti, W. T. H. M. Christoffor, and Soenardi .. 455 - 459
12. The effect of supplementation of different lysine sources on the performance of weaned pigs from 4 up to 10 weeks of age
Risel Diana H. Likadja ... 460 - 463

13. Effect of fiber source on the performance of weaned pigs from 4 up to 10 weeks of age
Johannis Ly and Risel D.H. Likadja ... 464 - 467

14. Influence of the introduction of cattle feedlot production system to increase the welfare of feedlot farmers group in Indonesia through the implementation of integrated sustainability farming system
Joko Riyanto, Susi Dwi Widyawati, and Wara Pratiti .. 468 - 473

15. Breeding *Bos somaliicus* d'Alton cattle in eastern Indonesia: cattle growth
Totok B. Julianto, Tanda Panjaitan, Geoffrey Fordyce, and Dennis Poppi 474 - 477

16. Breeding Bos javanicus d'Alton cattle in eastern Indonesia cattle control, diets, draught use and feeding
Tanda Panjaitan, Geoffrey Fordyce, Dennis Poppi .. 478 - 482

17. Breeding *Bos javanicus* d'Alton cattle in eastern Indonesia: Monitoring village cattle
Dennis Poppi, Tanda Panjaitan, Dahanuddin, and Geoffrey Fordyce 483 - 487

18. Application of non-linear models in estimating growth curves of body weight and sizes of Holstein-Friesian female cattle
Nia Kurniawan, and Anneke Anggraeni ... 488 - 496

20. Diversity on the exterior performance of crossbred cattle kept by farmers in central Java

21. Alternative control for endoparasites infection in goats by feeding fresh matured and immature leaves of * TERMINALIA CATAPP A*
Mohd Azrul Lokman, and Mohd Effendy Abd. Wahid ... 509 - 514

22. Growth of nine month old male buffalo calves as affected by different crude protein and energy concentrations
M. Sarwar, M. A. Shahzad, N.A. TAUQIR, and M. Nisa ... 515 - 520

23. Performance of lactating buffaloes as affected by varying concentrations of essential amino acids
N.A. TAUQIR, M.A. SHAHZAD, M.NISA, M.SARWAR, H.A. SADDIQUI, M. FAYYAZ, and M.A Tipu .. 521 - 526

Animal Physiology, Reproduction, and Genetics

1. Seasonal investigation of serum magnesium concentration in native cattle at Western Azerbaijan Province, Iran
M.R. Valilou and A.R. Roffi .. 527 - 530

2. Detection of *Toxoplasma gondii* based on sequence r529 and sag1 gene probe
Asmarani Kusumawati, Harto Widodo, Nafratilova Septiana, and Sri Hartati 531 - 534

3. Reproductive performance of dairy cows in Yogyakarta Province based on balanced ration given
Ahmad Pramono, Kustoono, and hari Hartadi .. 533 - 540
4. Breeding programme development of Bali cattle at P3Bali
Andoyo Supriyanto, Luqman hakim, Suyadi, and Ismulidono .. 541 - 546

5. Friesian holstein imported cows: physiological character and blood composition based on altitude difference
Ratna Dewi Mundingsari, Adiarto, and Soenarjo Keman .. 547 - 551

6. Breeding value of Friesian Holstein bulls in PT. Naksara Kejora Rowoseneng, Temanggung, Central Java
Hasyim Mulyadi, Indrawati Mei P., and RR. Mahardika N.P. .. 552 - 555

7. Genetic potency of weaning weight of boerawa Fl, backcross 1, and backcross 2 does at breeding centre: Tanggamus Regency, Lampung Province
Sulastri ... 556 - 560

8. Distribution of population and production estimate of some cattle breeds at Yogyakarta Province, Indonesia
Sumadi, Tety Hartatik, and Sulastri .. 561 - 564

9. In vitro fresh sperm preparation for maintaining sperm viability at storage temperature of 14°C using tannin supplementation of lamtoro leaves
Mirajuddin, Kustono, Ismaya, and A. Budyanto .. 565 - 571

10. Pheno-type and phylogenetic studies of local cattle in pacitan district, East Java, Indonesia
Muhammad Cahyadi, and Tety Hartatik .. 572 - 577

11. The exploration of genetic characteristics on Madura cattle
T. Hartatik, T. S. M. Widi, Ismaya, D.T. Widayati and E. Baliarti .. 578 - 584

12. Breeding Bos javanicus d’Alton cattle in Eastern Indonesia: Cattle reproduction
Geoffry Fordyce, Tanda Panjaitan, Totok B. Juliano, Eliza Kurtz, and Dennis Poppi 585 - 589

13. Improvement quality of Biligon goat sperm trough separation by albumen
Sigit Bintara, Soenarjo Keman, Sumadi, and Ali Agus .. 590 - 594

14. Correlation between plasma progesterone concentrations and local Progestins during the estrus cycle of Kedah Kelantan cows

15. Effect of PGF2α or CIDR on ovarian follicular development during estrous cycle in goats
Muhammad Modu Bukar, Rosnina Yusoff, Abd Wahid Haron, Gurmeet Kaur Dhaliwal, Mohammed Ariff Omar, Nur Husien Yimer, Mohd Azam Khan Goriman Khan .. 599 - 602

16. The use of frozen semen of Holstein-Friesian bulls with the BB genotype of the kappa casein gene in Indonesia
A. Anggraeni, C. Sumantri, and E. Andreas ... 603 - 606

17. Effect of haylage made of kumenge standinghay fermented with liquid palm sugar and local chicken manure on semen quality and scrotum circumference of male local goat
Henderiana L.L. Belli and Nathan G.F. Katipan ... 609 - 613

18. The early identification of twinning trait genes on Indonesian local beef cattle
Aryogi, Endang Baliaarti, Sumadi, and Kustono .. 614 - 622
19. Effect of bulls on pregnancy rate of estrous synchronized Brangus cows
A. Malik, H. Wahid, Y. Rosnina, A. Kasim, and M. Sabri ... 623 - 626

20. Analysis of Butyrophilin gene polymorphism in buffalo population in Khuzestan Province by PCR RFLP Technique
Beigi Nassiri, M. T. Mozafari, K. N. T. Hartatik, Fayazi, J. and Mirzadeh, K 627 - 630

Technology of Animal Products

1. The development of ripened cheese containing lactic acid bacteria; the effect on chemical composition, acid production and sensory value
Tridjoko Wisnu Murti ... 631 - 637

2. The restructured of local beef of low quality with different binders, fat emulsifiers and fortification with vitamins in beef burger
Setiyono and Soeparno .. 638 - 643

3. The using of extract rabbits stomachs in the making goat milk cheese ripened with Lactobacillus Acidophilus
Inda Dewata Sari, Nurliyani and Indratiningsih .. 644 - 648

4. Effect of broiler age and extraction temperature on characteristic chicken feet skin gelatin
Muhammad Taufik, Suwarjono Triatmojo, Yuny Erwanto, Umar Santoso 649 - 656

5. Quality changes of burger from vegetable, wheat flour, rice flour with fat emulsion during frozen storage

6. Polymerization of meat and Tempeh protein using transglutaminase and their potency as an antihippertency and antioxidant agent
Yuny Erwanto, Jamhari dan Rusman .. 663 - 670

7. The application of local dahlia tuber (Dahlia pinnata L.) as probiotics for improving viability of probiotics Bifidobacterium bifidum in yoghurt
Widodo, Nosa Septiana Anindita, Endang Wahyuni, and Indratiningsih 671 - 676

Extension, Community Development and Agribusiness

1. Elephant Camps and their impacts to community: Case study in Keud Chang, Chiang Mai Province, Thailand
Weerapon Thongma and Budi Gunotoro ... 677 - 682

2. Soft technology innovation for farmer empowerment to bring about practice change in an agricultural r&d project: lesson learnt from Eastern Indonesia
Nurul Hilmati, Elske van de Fliert, Medo Kote, Debora Kana Hau, Toni Basuki 683 - 689

3. The effects of dairy cattle ownership and farmers' demography factors on the evacuation moving farmers' behavior at Merapi volcano area (case study at Kaliadem Sub Village, Yogyakarta, Indonesia)
Siti Andarwati and F. Trisakti Haryadi .. 691 - 694
4. Farmers' profile and exterior characteristics of female Moa Buffaloes in Moa Island, Maluku Province
 Justhinus Pipiana, Endang Baliarti, and I Gede Suparta Budisatria 695 - 701

5. Economic analysis of on-farm feeding strategies to increase post-weaning live weight gain of Balinese calves
 Atien Priyanti, Simon Quigley, Marsetyo, Dicky Panungkas, Dahtanuddin,
 Esnawat Budisantoso, and Dennis Poppi ... 702 - 708

6. The role of livestock service in order to cattle agribusiness development in regency of
 Kupang
 Maurinus Wilhelmus Gili Tibo .. 709 - 716

7. Factors with the purchase of meat by consumers in Makassar, Sulawesi
 Nasrullah, Yusmasari, A. Nurhayu, Asmuddin Natsir, Mawardi A. Asja, Roy
 Murray-Prior, and Peter Murray .. 717 - 724

8. Goat supply from Enrekang, South Sulawesi to East Kalimantan: a long and winding road
 Mawardi A. Asja, Asmuddin Natsir, Roy Murray-Prior, Peter Murray, Nasrullah,
 Yusmasari, and A. Nurhayu .. 725 - 732

9. Goat meat consumption in Makassar, Sulawesi: Important for religious and cultural ceremonies, but many consider it a health risk
 Roy Murray-Prior, Asmuddin Natsir, Mawardi A. Asja, Nasrullah, Yusmasari, A.
 Nurhayu, and Peter Murray ... 733 - 740

10. Marketing practices of smallholder beef cattle producers in east java
 I. G. A. F. Mahendi, A. Priyanti, V. W. Hanifah, and R. A. Cramb 741 - 746

11. Empowerment of goat farming: Lessons learnt from the development of goat farming group of Peranakan Etawah Gunelar Banyumas
 Akhmadi Sodiq .. 747 - 752

12. Performance of credit program to small dairy cattle development in Indonesia
 Rini Widiati .. 753 - 758

13. Analysis of demand of broiler meat in Central Java
 Nurdayati, Sudi Nurtini, Masyhuri, and Rini Widiati .. 759 - 762

14. Decision making model analysis of technology adoption: empirical study on milk pasteurization retailer behavior
 Januar Tri Sukarna, Suci Paramitasari Syahlan, and Ahmad 763 - 766

15. An education management model based on cognitive learning for small dairy farmers in the tropics
 Viriya Munprasert, Phahol Sakkatatt, Varaporn Punyavadee, Striporn
 Kirati Karnkul and Dumrong Leenaruksa .. 767 - 770

16. Participation of women farmers on beef cattle farming management in Pundan Mulyo
 Group, Bantul, Yogyakarta
 Ida Wulandari, Budi Guntoro, and Endang Sulasstri ... 771 - 777

17. The sources of dairy cows and concentrate feed among the dairy farmers in Siemen
 Regency, Yogyakarta
 Endang Sulasatri and Budi Guntoro ... 778 - 780
18. Information access among chicken and cattle farmers in Gunung Kidul Yogyakarta and Ngada East Nusa Tenggara
Budi Guntoro, Fathul Wahid, Ali Agus, and Stein Kristiansen ... 781 - 784

Reviews

1. The use of gewang tree (*Corypha elata* var.) as feed for livestock in the tropics
Maritje A. Hilakore, U Ginting Monthe, and Y.L. Henuk ... 785 - 789

2. Optimizing nutrition of commercial livestock for minimal negative impact on the environment through precision feed formulation
Y.L. Henuk, S.Y.F.G. Dillak, S. Sembiring and C.A. Bailey .. 790 - 794

3. Performance and prospect of beef cattle development in Central Java
W. Roessali, Masyhuri, Sudi Nurtini, dan D.H. Darwanto ... 795 - 801

4. Livestock husbandry in India: a blessing for poor
Nizamuddin Khan, Anisur Rehman, Md. Asif Iqubal and Mohd. Sadiq Salman ... 802 - 807

5. Brown midrib resistance (BMR) corn
D. Soetrisno, M.H. Shane, C.M., Dschack, J.-S. Eun, and R.Z. Dale ... 808 - 811

INSTRUCTIONS TO AUTHORS
The measurement of rate of passage using different pairs of alkane as markers for sheep fed hay or fresh grass

Kustantinah,* R.W. Mayes,† E.R. Orskov†

*Faculty of Animal Science University of Gadjah Mada,Yogyakarta, Indonesia; and †The Macaulay Institute, Craigiebuckler,Aberdeen AB15 8QH,UK

ABSTRACT: This study used alkanes marker absorbed in the paper bung. Four pairs of alkanes: C30:C32, C28:C34, C26:C36 and C24:C38 were introduced to sheep by mouth, with a different time of dosing. The first group of sheep (n= 6) that were fed hay and second group of sheep (n = 4) were fed fresh ryegrass at similar dry matter intake (DMI), from the alkane marker excretion were calculated residence time of digesta in the digestive tract (mean retention time / MRT). MRT calculations were performed for each individual alkane on each individual sheep with two different feed. From the calculation, it was found that the MRT obtained in the group of sheep fed hay was 35.8 hours (C24), 43.0 hours (C26), 41.6 hours (C28), 40.1 hours (C30), 40.8 hours (C32), 42.0 hours (C34), 48.0 hours (C36), and 40.3 hours (C38). In the group sheep fed fresh ryegrass, the estimated MRT was 32.2 hours (C24), 41.7 hours (C26), 36.3 hours (C28), 40.3 hours (C30), 40.9 hours (C32), 36.6 hours (C34), 45.2 hours (C36), and 34.5 hours (C38). It can be seen that in general the value of MRT for sheep fed hay gave a higher value when compared with the MRT in the group fed fresh ryegrass, although statistically the MRT of the two groups did not differ significantly, except for MRT estimated using marker C38. MRT which estimated using the C38 gave a significant difference (P <0.05), i.e. 40.3 hours in sheep fed hay and 34.5 hours in sheep fed fresh ryegrass. The results of observations made, indicated that, for all types of markers and in all groups of sheep, in general there was no significant differences between MRT, except for C24 vs C36 (P<0.05) for groups of sheep fed hay and for C24 vs C36, and C28 vs C36 (P<0.05) for the group of sheep fed fresh ryegrass. The use of these alkanes markers were absorbed in paper bung provides a good estimation of the MRT.

Key words: mean retention time, alkane, sheep, hay and fresh ryegrass

INTRODUCTION

Some breeds of ruminant livestock are able to utilise vegetation more efficiently than other breeds, probably due, at least in part, to morphological and physiological differences in the digestive tract. Animals with an inherent ability to digest food more efficiently are likely to have higher digestive tract volumes and slower passage rates than other animals. Such knowledge of gut passage rates in different genotypes could be useful in trying to help explain differences in animal behaviour and pasture utilisation in cattle, sheep or goats grazing in upland environments. Breeding animals to have larger gut volumes and slower passage rates could enable animals to digest roughage diets more effectively. If there were an easy method of determining gut passage rate it has the potential to be used as a selective breeding tool. Mould et al (1983) showed a large differences between Bos Indicus (Bangladesh cattle) and Bob taurus (beef cattle in the UK), in ability to consume low quality forage. Similarly, rumen volume is strongly influenced by the period (time) of gestation and lactation (Kay, 1990), whereas Hoffman (1989) showed that variation of the size of stomach was caused by the quality of the feed. Some times ruminants are selected to have a low rumen volume (Hoffman, 1989), as it gives higher carcass weight relative to body weight.

Studies on the feed passage rate continues to evolve. Observations on the flow rate has been made for about 50 years by using various kinds of markers, and also various equations to calculate flow rate. An alternative method based on the analysis of plant alkanes in herbage and feces has been used to estimate DMI in ruminants (Mayes et al 1986, 1995, Dove and Mayes, 1996). The n-alkanes are saturated straight-chain hydrocarbons located in the cuticular wax of plants (Dove and Mayes, 1991). Natural alkanes were developed as marker to estimate intake, diet composition and digestibility by herbivores (Dove and Mayes, 1991). Dove and Mayes (1991) proposed using alkanes as marker for
measuring rate of passage. Studies in ruminants indicated that fecal recovery of alkanes increased with increasing chain length (Mayes and Lambs, 1984, Mayes et al., 1986).

The extent to which dietary components are fermented in the rumen is a function of potential rate and extent of fermentation and residence in the rumen. The residence in the rumen, usually expressed as the mean retention time (MRT), and can be determined from the decrease in the faecal concentration of a non absorbable marker in rumen. The faecal marker excretion technique (Grovum and William 1973) overcame the problem of representative sampling and has the advantage that fistulated animals are not necessarily required. Giradez et al (2004) have examined the rate of feed passage using carrier matrix different. Marker C24: cellulose powder, C26: paper bungs, C28: Gibson paper filters, C30: Cellulose powder, and C32: Shredded paper. While’s Bulang et al (2008). Were studied rate of passage use different marker. Different carrier matrices (lucerne fiber vs coarse maize meal) were labelled with synthetic alkanes C28 and C36.

The objective of this research was to investigate utilisation of pairs of alkanes as markers for measuring rate of passage by single dose for two different groups of animals, one group of sheep were fed hay consisting of mixture of ryegrass and clover and the second group of sheep were fed fresh ryegrass.

MATERIALS AND METHODS

Preparation of Marker Doses

Each alkane dose consisted of a pair of even-chain alkanes absorbed into tissue paper bungs (‘Cellucotton filters’- Carl Roth gmbh, Germany). The alkane pairs for the doses were as follows: Dose 1- C30/C32; Dose 2 – C28/C34; Dose 3 – C26/C36; Dose 4 – C24/C38. The doses were prepared in a fume cupboard, by dispensing a hot solution containing both alkanes of the pair (about 10% w/v in n-heptane, 60°C) on to each paper bung, after the bungs had been preheated to 130°C. The bungs were left in the fume cupboard over night to allow the solvent to evaporate. They were then placed in a oven at 100°C for 5 min, so that the alkane melted and was absorbed into the bungs.

Animal and Diets

Twelve adult Scottish Blackface sheep (average live weight 26.75 kg) were maintained on either hay consisting of mixture of ryegrass and clover (six animals) or fresh perennial ryegrass (six animals) in individual pens for two weeks as an acclimatisation period. The hay treatment was medium-quality grass hay collected from a single ‘big bale’ and chopped and mixed prior to feeding. After the acclimatisation period the sheep were transferred to metabolism cages and maintained on the same diet and feeding level throughout. The animals had constant access to water and were fed twice daily.

Marker Applications and Sampling Procedure

After two days in the cages animals on each dietary treatment were orally dosed as follows:

1. Artificial alkane Dose 1 (C30/C32)
2. Artificial alkane Dose 2 (C28/C34)
3. Artificial alkane Dose 3 (C26/C36)
4. Artificial alkane Dose 4 (C24/C38)

Following the first dose, total faecal collection bags were changed as the experimental period progressed according to the timetable.

Analytical Procedure for n-Alkanes in Sheep Faeces (Modification of Dove and Mayes, 2006)

Samples of faeces collections were freeze-dried and milled before analysis. Individual samples for each sheep at each sampling time were analysed for n-alkanes using 0.1g samples run in duplicate. After weighing the samples into screw-capped tubes (4ml capacity) approximately 0.11g of internal
standard solution \((n\text{-docosane (C}_{22})\) and \(n\text{-heptacosanol (C}_{27})\) in \(n\text{-decane)\) was added by weight. Ethanolic potassium hydroxide solution (1.5ml, 1M) was added. The tubes were capped and heated for 16 h at 90°C in a dry-block heater.

After partial cooling, (to 50 – 60°C), 1.5 ml \(n\text{-heptane} was added; the tube was capped and shaken gently. Water (0.4ml) was added and the tube, after re-capping, was shaken vigorously. The tubes were rest to allow the contents have separated into two liquid layers; if separation was not complete, tubes were centrifuged at low speed (1000rpm) for 5 min. The top (non-aqueous) layer was transferred to a second 4 ml tube using polyethylene pasteur pipettes. A second aliquot (1.5 ml) of heptane was added to the tube and the extraction was repeated, adding the top layer to the first non-aqueous extract in another 4ml tube. The tubes containing the non-aqueous extracts were placed on a dry-block heater fitted with a sample concentrator blowing air into the tube. The dried extract was redissolved in 0.3 ml heptane, with warming, and gently applied to a small column containing silica gel with a bed volume of 1 ml. Heptane (0.1 ml) was added to the column to wash the extract into the silica-gel bed. The hydrocarbons (including the \(n\text{-alkanes) were eluted from the column into a third 4 ml tube by the addition of a further 2.4 ml n-heptane. The heptane in the eluate was removed by evaporation to dryness on a dry-block heater. The hydrocarbon fractions obtained from the total collection faecal samples were dissolved in 0.5ml \(n\text{-heptane, with warming; a small aliquot (50µl) was transferred to a GC autosampler vial and the heptane removed by evaporation. The dried hydrocarbon aliquot was redissolved in 30µl \(n\text{-dodecane and the autosampler vial was capped prior to analysis by GC.}

Calculation of Faecal Alkane Concentrations

A data file produced by the Chromquest software, which contained peak areas was imported into Excel spreadsheet software; all subsequent data processing was carried out using Excel software. For each GC run, the ‘area %’ of each alkane peak was calculated:

\[
\text{Area\% alkane}_i = \frac{\text{Peak area of alkane}_i \times 100}{\text{Peak area of IS alkane (C}_{37})}
\]

Next, the standard response factors (SRF) for each alkane \((alkane)_i\) were calculated:

\[
\text{SRF}_i = \frac{\text{Area \% alkane, in mixed standard}}{\text{Wt\% alkane, in mixed standard}}
\]

where:

\[
\text{Wt\% alkane}_i = \frac{100 \times \text{Wt of alkane, in mixed standard solution}}{\text{Wt of IS alkane (C}_{37}) \text{ in mixed standard solution}}
\]

The second internal standard \((C_{22})\) was used to calculate a fractionation factor (FF), which enables a correction to be made for any chain length-dependent variation in degree of extraction of alkanes. This is based on the concept that without fractionation (discrimination) at the extraction stage, the ratio of the internal standard peak areas (i.e. \(C_{22}:C_{37}\), after correction for GC responses, will be the same as the ratio of the amounts of each internal standard added to the sample. For \(C_{22}\) internal standard, the fractionation factor \((FF_{22})\) was calculated as follows, for each GC sample run:

\[
\text{FF}_{22} = \frac{\text{Area\% C}_{22} \text{ in sample}}{100 \times C_{22} : C_{37} \text{ concentration ratio in IS solution}}\times \frac{1}{\text{SRF}_{22}}
\]

Assuming that there was a linear change in fractionation factor with chain length, the fractionation factor for the other alkanes were calculated as shown:

\[
\text{FF}_i = (i - 22) \times \frac{1 - \text{FF}_{22}}{15} + \text{FF}_{22}
\]

Having added sample and internal standard weight data, and dry-matter (DM) concentrations to the Excel spreadsheet, the concentrations of \(n\text{-alkanes in faecal samples could then be calculated:}

\[
\text{Concentration of alkane } = \text{Area\% alkane} \times \text{DM concentration}
\]

\[
\text{Concentration of IS } = \text{Area\% IS} \times \text{DM concentration}
\]

\[
\text{Concentration of faecal sample } = \text{Concentration of alkane} - \text{Concentration of IS}
\]

\[
\text{Concentration of internal standard } = \text{Concentration of IS}
\]

\[
\text{Concentration of faecal sample } = \text{Concentration of internal standard}
\]
The 5th International Seminar on Tropical Animal Production
Community Empowerment and Tropical Animal Industry
October 19-22, 2010, Yogyakarta, Indonesia

\[
\text{Concentration alkane}_i (\text{mg/kg DM}) = \frac{10 \times \text{Area} \% \text{alkane}_i \times C_{37} \text{ IS wt (mg)}}{\text{Sample wt (g)} \times \text{DM content} \times \text{SRF} \times \text{FF}_i}
\]

where: \(C_{37} \text{ IS wt} = \text{IS solution weight (g)} \times C_{37} \text{ concentration in standard solution (mg/g)} \).

6. Gut passage rate calculations

The following set of procedures were used in the processing of the data: Subtract ‘background’ faecal concentrations of markers from the marker concentrations in faeces samples collected after administration of the first marker dose. Calculate the mean retention time (MRT) for each marker in each sheep, using equation of Faichney (1975).

Statistical Analysis

Data for the MRT were analyzed using analysis of mean differences (T test), the correlation between the MRT and peak time analyzed using linear regression, while comparison of the mean of the individual alkane in the same feed, using one way ANOVA. All calculations of data using statistical program statistical product and service solution (SPSS) for windows version 17

RESULTS AND DISCUSSION

Dry Matter Intake

The average live weight of the sheep used in this study was 26.7 kg, the average of live weight was almost the same for both of group I and II used in the measurement of mean retention time of sheep fed hay and sheep fed fresh ryegrass. Dry matter intake was 379 ± 22 grams per head per day in groups of sheep fed hay and 376 ± 6 grams per head per day in groups of sheep fed fresh ryegrass (Table 1).

<table>
<thead>
<tr>
<th>Table 1. Dry matter intake</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feeds offered</td>
</tr>
<tr>
<td>Sheep no</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>Mean live weight (Kg)</td>
</tr>
<tr>
<td>Average DMI±StDev (gr/head)</td>
</tr>
</tbody>
</table>

\(^{a,b} \) Different superscripts in the same row indicate a significant difference (P<0.05)

Marker Excretion Curve

Marker excretion was observed during the 9 days, and the calculations take into account the excretion of fecal samples collected based on the time of collection. Marker excretion curve was observed for each pair of markers which is C_{30}/C_{32}, C_{28}/C_{34}, C_{26}/C_{36} and C_{24}/C_{38} for the group of sheep fed hay (Group I) and for the group of sheep fed fresh ryegrass (Group II). Overall, it was observed that, each pair of marker alkanes gave a similar curve patterns with one another, it was observed for both groups of sheep fed differently. In making the calculation of the curve, the concentrations of alkanes (g/kg DM) was reduced by the existing content of alkanes in the feces before the introduction of markers. Curves obtained, on all pairs were similar to the normal curve (Figure 1).
By calculating each MRT alkane markers that are not significantly different, then we have conducted adjustment curve for marker pairs C_{26}/C_{36} and C_{24}/C_{38} (Figure 1). Overall, the concentration curve of marker excretion (mg/kg DM) to ryegrass was always higher, when compared with the hay diet. Concentration highest in the ryegrass reached 700 mg/kg DM for the C_{30} and C_{32}, 500-550 mg/kg DM in the C_{26}, C_{28}, C_{34}, C_{36} and reached 600 mg/kg of DM at C_{24} and C_{38}. Different observations obtained for hay, which is overall marker excretion was approximately 300 mg/kg DM, this applies to all alkane markers (Figure 1).

If all marker pairs were observed together with observed excretion markers individually, it was found that the marker pairs C_{24}/C_{38}, is the earliest marker excreted both for sheep fed hay and for sheep fed fresh ryegrass, and pairs of C_{26}/C_{36} out the most latest marker, for both of sheep fed differently.

![Figure 1](image)

Figure 1. Faecal total collection sample concentration (mg/Kg DM) plotted against time (h) after marker dosed for sheep fed hay (n=6) and for sheep fed ryegrass (n=4)

<table>
<thead>
<tr>
<th>Feeds</th>
<th>C_{24}</th>
<th>C_{26}</th>
<th>C_{28}</th>
<th>C_{30}</th>
<th>C_{32}</th>
<th>C_{34}</th>
<th>C_{36}</th>
<th>C_{38}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hay (n=6)</td>
<td>35.8±a</td>
<td>43.0±a</td>
<td>41.6±a</td>
<td>40.1±a</td>
<td>40.8±a</td>
<td>42.0±a</td>
<td>48.0±a</td>
<td>40.3±a</td>
</tr>
<tr>
<td>(SEM)</td>
<td>(0.3)</td>
<td>(0.6)</td>
<td>(0.6)</td>
<td>(0.8)</td>
<td>(0.8)</td>
<td>(0.6)</td>
<td>(0.7)</td>
<td>(0.4)</td>
</tr>
<tr>
<td>Fresh ryegrass (n=4)</td>
<td>32.2±a</td>
<td>41.7±b</td>
<td>36.3±a</td>
<td>40.3±a</td>
<td>40.9±a</td>
<td>36.6±a</td>
<td>45.2±a</td>
<td>34.5±b</td>
</tr>
<tr>
<td>(SEM)</td>
<td>(0.2)</td>
<td>(0.9)</td>
<td>(1.2)</td>
<td>(0.5)</td>
<td>(0.5)</td>
<td>(1.1)</td>
<td>(1.2)</td>
<td>(0.2)</td>
</tr>
</tbody>
</table>

^a, b^ Different superscripts in the same column indicate a significant difference (P<0.05)

The calculation of the MRT showed that in the same feed, the MRT calculated from each individual alkanes, the lowest MRT was 35.8 ± 0.4 hours (estimated based on C_{24}) and the highest MRT was 48.0 ± 0.7 hours, (estimated from the C_{36}) (Table 2). These value were obtained in sheep
fed hay (n = 6). While in the group of sheep fed fresh ryegrass, the MRT estimates ranged from 32.2 ± 0.2 hours when estimated using marker C24 and MRT of 45.2 ± 1.1 hours when estimated using C36. It can be stated that, for all markers in group of sheep fed hay, in general there was no significant differences between MRT, except for C24 vs C36 (P<0.05), and in group of sheep fed fresh ryegrass there was no significant differences between MRT, except for C24 vs C36, and C38 vs C36 (P<0.05).

Dry Matter Intake

Feed offered to sheep in this study was hay consisting of mixture of ryegrass and clover or fresh ryegrass or commonly called *Lolium perenne*. Naturally, ryegrass already contains the n-alkane (Cortes *et al.*, 2005, Dove *et al.*, 1996, Stevens *et al.*, 2002). For example (Ferreira *et al.*, 2009) showed that even-alkane concentration of *L. perenne* was 2.2 mg/Kg DM for C26, 9.4 mg/Kg DM for C28, 11.1 mg/Kg DM for C30, and 6.1 for C32. The grass naturally contain an alkanes, which was substracted from the faeces to separate alkane marker from the basal feeds.

The quantity of feed given was restricted, rather than ad libitum. This was to avoid bias, which may be obtained if the feed is ad libitum, because as described above, that ryegrass naturally, already contain alkanes. So, with the restricted diet, the initial alkane content, was not expected to significantly different for each individual animal. Although the feed offered was limited, the DMI of both groups of sheep were 379 g/head/day (hay) and 376 g/head/day (fresh ryegrass). No significant differences between the two DMI. DMI was approximately 1.4% of body weight.

Excretion Marker Curve

Visible curve for each pair of markers gave the same pattern, as well as providing value of peak time and MRT did not differ statistically, meaning that in fact when used alkane as a marker for the measurement of the MRT, then only needed one of these alkanes in pairs (Figure 3). In this study fecal alkane recovery has not measured, but from previous research, it was found that the faecal recovery of n-alkane increased with the C-chain length (Duncan *et al.*, 1999, Mayes *et al.*, 1986 and Giraldez *et al.*, 2006). For example, Giraldez *et al.* (2004) found that the faecal recovery of alkanes was 77% for C24, 81% for C28, 92% for C30 and 95% for C32, while Ferreira *et al.* (2009) showed that the faecal recovery of mixture of herbage was 40% for C28, 75% for C30, 92% for C32.

Alkane excretion patterns for sheep fed hay and fresh ryegrass were different, for peak excretion of sheep fed hay was reached at concentrations around 300 mg/kg DM, while in the sheep fed ryegrass, peak excretion was reached at concentrations above 500 mg/kg of DM (Figure 3). This excretion pattern similar to that obtained by Duncan *et al.* (1999) who compared Spinach and cabbage or a mixture of grass-dominated pasture-Phleum pratense Timothy.

Mean Retention Time (mean±s.e.m)

Alkane pair data, provided no significant differences of MRT when compared in pairs C30/C32 different feed, either observed for the pair C28/C34, C26/C36 and C24/C38.

The digesta flow or the residence time of food particles can be used to predict fibre digestibility (Veira *et al.*, 2008a, Veira *et al.*, 2008b, Stensig *et al.*, 1999., Huhtanen *et al.*, 1995) so that the flow rate or residence time will be reflected in dry matter intake (DMI). Giraldez *et al.*, (2006) stated that there be an increase in the level of intake is generally related to flow rate.

MRT was calculated from pair of alkane C30/C32 were 40.4 and 41.5 hours, consecutively for hay and ryegrass and pairs of alkane C28/C34 were 42.1 hour for hay and 36.4 hour for fresh ryegrass, and pairs of alkane C26/C36 were 45.6 hours for hay and 43.4 hours for fresh ryegrass, for the pairs of alkane C24/C38 were 38.3 hours for hay and 33.3 for fresh ryegrass. No significant differences were found between the feed.

MRT values in this study, was 10 points lower when compared to the MRT as measured using marker mordanted Cr-fiber (Giraldez *et al.*, 2006), with similar diet, but the value in this study was 10 points higher if MRT estimated using alkanes sprayed on leaves or on stems, (Giraldez *et al.*, 2006). Similar value obtained of MRT when estimated using the absorbed C26 paper bung (Giraldez *et al.*, 2006).
2004). While Bulang et al (2008) found high values for the estimated of MRT when estimated using marker Cr mordanted in Lucerne. It appears there was a consistency of usage of Cr is to give value always higher when compared to estimates using alkanes.

MRT estimated from the mean of each marker pairs, showed that the type of feed was not making any differences on the MRT, the same observation was found to peak time, when observed in one feed, apparently in sheep fed hay, pair marker C\(_{30}:C_{32}\), C\(_{28}:C_{34}\), C\(_{26}:C_{36}\) and C\(_{24}:C_{38}\), did not make a difference significantly. Whereas for sheep fed ryegrass, MRT estimated from marker pairs C\(_{30}:C_{32}\), C\(_{28}:C_{34}\) and C\(_{26}:C_{36}\), provided no difference significantly, but the MRT for sheep fed on ryegrass, which are estimated pair alkanes C\(_{26}:C_{36}\) differ significantly from the MRT which are estimated using the alkane pair C\(_{24}:C_{38}\) (P <0.05).

Alkanes absorbed in the paper bung, apparently were released faster and better mixed with the digesta in sheep fed ryegrass than in sheep fed hay.

CONCLUSIONS

In general, the marker excretion curve, for each individual alkane showed the same pattern for each type of feed, so that the group of sheep fed hay gave a similar pattern of excretion curve to the group of sheep fed ryegrass, but with different peaks.

Marker excretion curve for pairs of markers C\(_{30}:C_{32}\), C\(_{28}:C_{34}\), C\(_{26}:C_{36}\) and C\(_{24}:C_{38}\), gave a similar pattern for each type of feed, although the sheep fed ryegrass gave higher peak of the curve when compared to sheep fed hay.

There was no significantly difference between MRT in sheep fed hay and sheep fed ryegrass when estimated from individual each marker.

LITERATURE CITED

Certificate

Kustantinah

It’s hereby certified that

has participated as presenter in The 5th International Seminar on Tropical Animal Production (ISTAP) on October 19 - 22, 2010 in Yogyakarta

“Community Empowerment And Tropical Animal Industry”

held by Faculty of Animal Science, Universitas Gadjah Mada, Indonesia

Prof. Dr. Tri Yuwanta
Dean

Faculty of Animal Science
Universitas Gadjah Mada