“WISDOM OF USING LOCAL RESOURCES FOR DEVELOPMENT OF SUSTAINABLE ANIMAL PRODUCTION IN DEVELOPING COUNTRIES”

The Singhasari Resort, Batu City, Indonesia, October 16-19, 2017
PROGRAM AND ABSTRACT BOOK

of
The 6th International Conference on
Sustainable Animal Agriculture for Developing Countries
(SAADC 2017)

October 16-19, 2017
The Singhasari Resort, Batu City, Indonesia

Organized by:
Faculty of Animal Husbandry, Brawijaya University, Indonesia

In Collaboration with:
Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Malaysia
Australia’s Aid Program, Department of Foreign Affairs and Trade, Australian Government
INTERNATIONAL ADVISORY COMMITTEE

Chairman:
Dr. Juan Boo Liang (Malaysia)

Secretary:
Dr. Elizabeth Wina (Indonesia)

Members:
Prof. Dr. Peter Wynn (Australia)
Prof. Ermias Kebreab (USA)
Prof. Dr. Hiroyuki Hirooka (Japan)
Prof. Dr. Harinder Makkar (FAO)
Assoc. Prof. Dr. Yoshiaki Hayashi (Japan)
Prof. Dr. Long Ruijin (China)
Prof. Chul-Ju Yang (Korea)
Asst. Prof. Dr. Chalermpon Yuangklang (Thailand)
Prof. Dr. Liang Chou Hsia (Taiwan)
Dr. Pietro Celi (USA)
Dr. Chris McSweeney (Australia)
Dr. Sosheel Godfrey (Australia)
Dr. Hassan Warriach (Pakistan)
Dr. Vo Thi Kim Thanh (Vietnam)
Assoc. Prof. Dr. Pramote Paengkoum (Thailand)
Dr. Peter Daniels (Australia)
Prof. Dr. Sc. Agr. Ir. Suyadi, MS (Indonesia)

Organizing Committee

Advisors:
Prof. Dr. Ir. Mohammad Bisri, MS (Rector of Brawijaya University)
Prof. Dr. Ir. Kusmartono (Vice Rector for Academic Affair of Brawijaya University)
Prof. Dr. Sc. Agr. Ir. Suyadi, MS (Dean of Faculty of Animal Husbandry, Brawijaya University)

Chairman:
Prof. Dr. Ir. Ifar Subagiyo, M.Agr.St.

Vice Chairman:
Dr. Ir. Marjuki, M.Sc.

Secretary:
Dr. M. Halim Natsir, S.Pt., MP
Aswah Ridhowi, S.Pt., MP, M.Sc.
Awang Tri Satria, S.Pt., ME
Jaisy Agniarachim P.T., S.Pt., MP

Financial/Treasurer
Prof. Dr. Ir. Ani Nurgiartiningsih, M.Sc.
Deny Agustingsih, SH.
Asri Nurul Huda, S.Pt., MP, M.Sc
Website
Ahmad Riyanto
Arifatul Hafidz Achsan
Zaenal Abidin

Scientific Committee
Dr. Ir. Gatot Ciptadi, DESS (Indonesia)
Aulia Puspita Anugera Yeki, S.Pt., MP, M.Sc. (Indonesia)
Yuli Frita Nuningtyas, S.Pt., MP, M.Sc. (Indonesia)
Prof. Dr. Ir. Trinil Susilowati, MS (Indonesia)
Prof. Yusuf L. Henuk (Indonesia)
Dr. Elizabeth Wina (Indonesia)
Dr. Juan Boo Liang (Malaysia)
Dr. Vincenzo Tufarelli (Italy)
Prof. Dr. Peter Wynn (Australia)
Assoc. Prof. Dr. Songsak Chumpawadee (Thailand)
Dr. Peter Daniels (Australia)
Prof. Ermias Kebreab (USA)
Dr. Norhani Abdullah (Malaysia)

Program
Dr. Siti Azizah S.Pt., M.Sos., M.Commun.
Ir. Trianti Djoharjani, M.Agr.St.
Anie Eka K., S.Pt., MP, M.Sc.

Transportation and Accommodation
Nadhiroh, S.Sos
Sutikno
Yusuf
M. Bahrudin

Logistic
Dr. Ir. Tri Eko Susilorini, MP
Dr. Ir. Kuswati, MS
Umi Salamah

Equipments, Decoration, and Documentation
Nanang Febrianto, S.Pt., MP
Ir. Kusno Waluyo
Rasidi
Purwanto
Ponidi
Dita Anggraini Djumari, S.Kom

Field Trip
Dr. Herly Evanuarini, S.Pt., MP
Wike Andre Septian, S.Pt., M.Si.
Firmansyah Tri S., S.Pt., MP, M.Sc

Registration
Heli Tistiana, S.Pt., MP
Firman Jaya, S.Pt., MP
Premi Puspitawati, S.Pt., MP
Mulia Winirsya Apriliani, S.Pt., MP
Ria Dewi Andriani, S.Pt., MP, M.Sc
Poespita Sari Hazanah N., S.Pt., MP
Tentative Program SAADC 2017

<table>
<thead>
<tr>
<th>Sunday, October 15</th>
<th>Room : Singhasari Resort Lobby</th>
</tr>
</thead>
<tbody>
<tr>
<td>15:00-19:00</td>
<td>Pre-registration</td>
</tr>
</tbody>
</table>

Opening Ceremony and Keynote Speeches Monday, 16 October 2017

<table>
<thead>
<tr>
<th>Monday, 16 October 2017</th>
<th>University of Brawijaya</th>
</tr>
</thead>
<tbody>
<tr>
<td>07:30-08:30</td>
<td>Registration (Room: Faculty of Animal Husbandry, University Brawijaya)</td>
</tr>
</tbody>
</table>
| 08:30-09:30 | Report by Chairman of SAADC 2017
Prof. Dr. Ir. Ifar Subagiyo, M.Agr.St.
Welcome Participants by President of SAADC
Prof. Dr. Liang Juan Boo
Opening Remarks by Dean Faculty of Animal Husbandry, Brawijaya University
Prof. Dr.Sc.Agr. Ir. Suyadi, MS |
| 09.30-09.45 | Coffee Break |
| 09.45-10.15 | Prof. Peter Wynne
Making money from milk on small-holder dairy farms in the tropics: An international perspective |
| 10.15-10.45 | Prof. V. M Ani Nurgiartiningsih
Performance improvement of local cattle production in Indonesia through selection |
<p>| 10.45-12.00 | Lunch Break |
| 12.00-13.30 | Trip to Singhasari Hotel |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>AP-106</td>
<td>The effect of papaya leaves (Carica papaya L.) on production and quality of egg in gold and silver Arab laying hens</td>
</tr>
<tr>
<td>2</td>
<td>AP-113</td>
<td>Characteristics of vocalization in Hanwoo (Bos taurus coreanae) under different calls causing conditions</td>
</tr>
<tr>
<td>3</td>
<td>AP-118</td>
<td>Expression of stearoyl-CoA desaturase (SCD) gene and mono-unsaturated fatty acids content in goat and sheep fed high concentrate diet</td>
</tr>
<tr>
<td>4</td>
<td>AP-125</td>
<td>Exterior characteristics of female Gembrong goat in Karangasem, Bali</td>
</tr>
<tr>
<td>5</td>
<td>AP-129</td>
<td>Estimation of energy requirements of growing goat for maintenance by metabolism trial</td>
</tr>
<tr>
<td>6</td>
<td>AP-130</td>
<td>Carcass characteristic of bull Bali on different ages</td>
</tr>
<tr>
<td>7</td>
<td>ANF-218</td>
<td>Effect of high energy feed source on in vitro ruminal fermentation and in situ digestibility</td>
</tr>
<tr>
<td>8</td>
<td>ANF-227</td>
<td>Effect of feed additive supplementation on reduction of heat stress of Holstein dairy cow and broiler during summer season</td>
</tr>
<tr>
<td>9</td>
<td>ANF-259</td>
<td>Feed supplementation for dairy cattle by using multi nutrient feed supplement without molasses (MFSWM)</td>
</tr>
<tr>
<td>10</td>
<td>ANF-261</td>
<td>The research and development of forage sorghum in Gansu Province, PR China</td>
</tr>
<tr>
<td>11</td>
<td>ANF-262</td>
<td>Nutritive value of botanical fraction in maize by-products from various varieties</td>
</tr>
<tr>
<td>12</td>
<td>ANF-263</td>
<td>Used dried cassava leaves with enzymes from fermented tomato pomace with Aspergillus niger in laying duck diet on nutrient digestibility</td>
</tr>
<tr>
<td>13</td>
<td>AGB-310</td>
<td>Study on a polymorphism in the promoter region of the SIRT1 gene in Agerolese cattle breed</td>
</tr>
<tr>
<td>14</td>
<td>AGB-311</td>
<td>Analysis of a polymorphism at STAT5A gene in Agerolese cattle breed</td>
</tr>
<tr>
<td>15</td>
<td>AR-415</td>
<td>Validity and reliability of “Leveled container” to measure testicular volume in goat</td>
</tr>
<tr>
<td>16</td>
<td>APT-518</td>
<td>Effect of addition of local taro starch (Colocasia esculenta) to the chemical and microbiological properties of yogurt</td>
</tr>
<tr>
<td>17</td>
<td>SE-713</td>
<td>Analysis of technical, economic, and allocative efficiency and factors affecting beef cattle business profit (a case study in Tumpang sub-district, Malang regency)</td>
</tr>
<tr>
<td>18</td>
<td>SE-720</td>
<td>Feasibility analysis of laying hen business of pullet period in villages Ngebruk District Poncokusumo Malang</td>
</tr>
<tr>
<td>19</td>
<td>VE-802</td>
<td>Bovine respiratory syncytial virus and bovine viral diarrhea virus antibodies – detection and effect to milk composition in dairy cattle</td>
</tr>
<tr>
<td>20</td>
<td>VE-816</td>
<td>Neutrophil Gelatinase-Associated Lipocalin (NGAL) correlation in urine and blood serum on Acute Kidney Injury (AKI) patient</td>
</tr>
</tbody>
</table>
CONTENTS

KEYNOTE ADDRESS

| Keynote speaker | Making money from milk on small-holder dairy farms in the tropics: An international perspective | 1 |

INVITED PAPERS

Invited speaker	Robust study design for animal production in developing countries	9
Invited speaker	Effect of krabok oil on feed intake, nutrient digestibility and ruminal microbial population in swamp buffalo fed rice straw as roughage source	10
Invited speaker	Developing methanogen-specific inhibitors to help mitigate methane emissions from ruminants: A New Zealand perspective	12
Invited speaker	Herbal supplementation on the carcass characteristics and plasma metabolites of broiler	13
Invited speaker	Methane losses from pre & post-gastric digestive compartment: A microbial overview	14
Invited speaker	Exploration of genetic potential of Pakistani cattle for milk producibiltiy	15
Invited speaker	Implementation of breeding programme for sustainable livestock production in tropical countries	16
Invited speaker	Current technology and development of dairy products for sustainable dairy production	18
Invited speaker	Symbiotic relationship and sustainable agriculture	19
Invited speaker	Towards a cost-effective feeding of broiler chickens	20
Invited speaker	Herd characteristics, feed resources and socioeconomic aspects of smallholder dairy farm in Lampang Province, Northern Thailand	21

ORAL PRESENTATION

Animal Production

<p>| AP – 101 | The effect of litter size on feed intake and milk production of first lactating Etawah crossbred goat | 23 |
| AP – 107 | Effect of supplementation of fermented yeast culture during summer on plasma leptin ghrelin and their expression of receptors in different tissues and on production performance during post summer period in PD 3 chicken line | 24 |
| AP – 108 | Egg quality parameters of laying hens fed dried tomato meal in diet | 25 |
| AP – 109 | Carcass quality as well as composition and oxidative stability of the meat of crossbreds of Thai indigenous chickens and a layer breed as compared with purebred Thai indigenous, layer and broiler chickens | 26 |
| AP – 110 | Effect of genotype on productive and reproductive traits of Desert and Taggari goats managed under natural grazing during rainy season | 27 |</p>
<table>
<thead>
<tr>
<th>Paper No.</th>
<th>Title</th>
<th>Authors and Affiliations</th>
</tr>
</thead>
<tbody>
<tr>
<td>VE – 806</td>
<td>Studies on bactericidal and virucidal efficacy and stability of food additive calcium hydroxide for biosecurity enhancement on and around poultry farms</td>
<td></td>
</tr>
<tr>
<td>VE – 807</td>
<td>Longitudinal humoral immune response comparison between high and low Newcastle disease virus titer of in house inactivated vaccine using single vaccination in layer chicken</td>
<td></td>
</tr>
<tr>
<td>VE – 808</td>
<td>Studies on Escherichia coli and Salmonella infantis inactivation using slaked lime and food additive calcium hydroxide</td>
<td></td>
</tr>
<tr>
<td>VE – 809</td>
<td>In vitro study on the efficacy of individual and blended disinfectants against vital microorganisms in swine</td>
<td></td>
</tr>
<tr>
<td>VE – 810</td>
<td>The concentration of serum proteins, albumin, globulin and A/G ratio in calves and adult Friesian Holstein</td>
<td></td>
</tr>
<tr>
<td>VE – 811</td>
<td>Production of IgG against avian influenza from bovine colostrum to control bird flu infection</td>
<td></td>
</tr>
<tr>
<td>VE – 812</td>
<td>Acute phase proteins as early biomarkers in buffaloes infected with Pasteurella multocida type B: 2 and its immunogens (LPS and OMP)</td>
<td></td>
</tr>
<tr>
<td>VE – 813</td>
<td>Research experience animal model potential of Lactobacillus bulgaricus to prevent against livestock aflatoxicosis based on clinical pathology on hepatic malondialdehyde (MDA) and blood triglycerides (TG)</td>
<td></td>
</tr>
<tr>
<td>VE – 815</td>
<td>Efficacy maternal antibody (IgG) transfer to protect against infection diarrhea on 1st week post natal calves</td>
<td></td>
</tr>
<tr>
<td>VE – 817</td>
<td>Benthic foraminifera as bio-indicators of estuarine environment: A pilot study from Quang Tri Province, Vietnam</td>
<td></td>
</tr>
</tbody>
</table>

POSTER PRESENTATION

Animal Production

<table>
<thead>
<tr>
<th>Paper No.</th>
<th>Title</th>
<th>Authors and Affiliations</th>
</tr>
</thead>
<tbody>
<tr>
<td>AP – 106</td>
<td>Effect of papaya leaf (Carica papaya L.) on gold and silver Arab chicken egg production and quality</td>
<td></td>
</tr>
<tr>
<td>AP – 113</td>
<td>Characteristics of vocalization in Hanwoo (Bos taurus coreanae) under different calls causing conditions</td>
<td></td>
</tr>
<tr>
<td>AP – 118</td>
<td>Expression of stearoyl-CoA desaturase (SCD) gene and monounsaturated fatty acids content in goat and sheep fed high concentrate diet</td>
<td></td>
</tr>
<tr>
<td>AP – 125</td>
<td>Exterior characteristics of female Gembrong goat in Karangasem, Bali</td>
<td></td>
</tr>
<tr>
<td>AP – 129</td>
<td>Estimation of energy requirements of growing goat for maintenance by metabolism trial</td>
<td></td>
</tr>
<tr>
<td>AP – 130</td>
<td>Carcass characteristic of bull Bali on different ages</td>
<td></td>
</tr>
</tbody>
</table>

Animal Nutrition and Feed Technology

<table>
<thead>
<tr>
<th>Paper No.</th>
<th>Title</th>
<th>Authors and Affiliations</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANF – 218</td>
<td>Effect of high energy feed source on in vitro ruminal fermentation and in situ digestibility</td>
<td></td>
</tr>
<tr>
<td>ANF – 227</td>
<td>Effect of feed additive supplementation on reduction of heat stress of Holstein dairy cow and broiler during summer season</td>
<td></td>
</tr>
</tbody>
</table>
Exterior characteristics of female Gembrong goat in Karangasem, Bali

Bayu Andri Atmoko¹, I Gede Suparta Budisatria¹, Sigit Bintara¹, Dyah Maharani¹ and I Made Londra²

¹Faculty of Animal Science, Universitas Gadjah Mada, Yogyakarta, Indonesia
²The Assessment and Development Institute for Agricultural Technology, Bali Province, Indonesia
Corresponding author: budisatria@ugm.ac.id

Abstract

Gembrong goat is one of local genetic resources of livestock in Bali Province. The population is categorized as endangered and critical breed based of World Watch List for Domestic Animal in 1997. Currently its population under 50 individuals were spread in Bali Province. This paper explain the exterior characteristics of female Gembrong Goat was found in Karangasem Regency, Bali Province. Twelve female Gembrong Goat were observed including face appearance, coat colour, horn, ear appearance. Head and body measurements were obtained, including head length, head girth, ear length, chest girth, body length, withers height, hip height. The descriptive statistical analysis was applied due to the small size numbers of goat in this research. Female Gembrong goat have flat face appearance, small pointed horn, hanging to the side ear, and have white, brown, black coat colour dominant is 50%, 25% and 25% respectively. Result of the head measurement show that the average of head length, head girth, ear length, is 18,20±1,14 cm, 11,30±0,82 cm, and 14,20±2,04 cm respectively, so the head index is 62,08±0,72. Body size of female Gembrong Goat such as chest girth, body length, withers height, hip height respectively was 67,42±3,21 cm, 48,50±4,40 cm, 51,50±3,21 cm and 54,58±3,55 cm. In case compared with the Exterior characteristics of female Gembrong goat in previous research in 2004 and 2014, appears to decrease ear length and all of the body size, this indicates a decrease in genetic quality of Gembrong Goat was raised with traditional management by small farmer in Karangasem, Bali.

Keywords: Gembrong goat, exterior characteristics, body size, Karangasem Bali, critical breed
Exterior characteristics of female Gembrong Goat in Karangasem, Bali

Bayu Andri Atmokoa, I Gede Suparta Budisatriaa, Sigit Bintaraa, Dyah Maharania, I Made Londrab

aFaculty of Animal Science, Universitas Gadjah Mada, Yogyakarta, Indonesia
bThe Assessment and Development Institute for Agricultural Technology, Bali Province, Indonesia

budisatria@ugm.ac.id

Abstract

Gembrong goat is one of local genetic resources of livestock in Bali Province. The population is categorized as endangered and critical breed based on World Watch List for Domestic Animal in 1997. Currently its population under 50 individual were spread in Bali Province. This paper explain the exterior characteristics of female Gembrong Goat was found in Karangasem Regency, Bali Province. Twelve female Gembrong Goat were observed including face appearance, coat colour, horn, ear appearance. Head and body measurements were obtained, including head length, head girth, ear length, chest girth, body length, withers height, hip height. The descriptive statistical analysis was applied due to the small size numbers of goat in this research. Female Gembrong goat have flat face appearance, small pointed horn, hanging to the side ear, and have white, brown, black coat colour dominant is 50%, 25% and 25% respectively. Result of the head measurement show that the average of head length, head girth, ear length, is 18,20±1,14 cm, 11,30±0,82 cm, and 14,20±2,04 cm respectively, so the head index is 62,08±0,72. Body size of female Gembrong Goat such as chest girth, body length, withers height, hip height respectively were 67,42±3,21 cm, 48,50±4,40 cm, 51,50±3,21 cm and 54,58±3,55 cm. In case compared with the Exterior characteristics of female Gembrong goat in previous research in 2004 and 2014, appears to decrease ear length and all of the body size, this indicates a decrease in genetic quality of Gembrong Goat was raised with traditional management by small farmer in Karangasem, Bali.

Keyword: gembrong goat, exterior characteristics, body size, karangasem bali, critical breed

Introduction

Indonesia owns several goat germ plasm some of which are known as Kacang goat, Etawah Crossbred goat, Bligon goat, Kejobong goat, Gembrong goat, Kosta goat, and Marica goat. Each has its own different characteristics related to its natural spreading areas, most of those breeds have limited spreading areas which mean they are not widely distributed. Amongst those breed, the most endangered population is Gembrong goats (Budisatria, 2009). Gembrong is one of Indonesian indigenous breed of goats raised in Karangasem, Bali Gembrong goat mostly has the long shiny white hair that covering its whole body including its necked and face (Maharani et al., 2014)
Based on the report the World Watch List for Domestic to Animal, in 1997 a population of Gembrong Goat as many as 100 heads (Scherf, 2000), while population is not currently more than 50 heads. The recent research found that the population of Gembrong goats at Karangasem district were only 26 heads, consisted of 10 head male and 16 head female (Budisatria et al., 2014; Maharani et al., 2014; and Bintara et al., 2015).

Conserving genetic of domestic animals such as Gembrong goats urgently required, primarily because their population decreased annually and once lost, genetic material is irreplaceable (budisatria et al., 2014). Many studies reported that Gembrong goats is a specific type of goat differ from the indigenous breed (Kacang goats) and their Ettawa-crossbreds (Oka et al. 2011). Several studies have reported on exterior characteristic of Gembrong goats. However, the population of the gembrong goats is limited, and its development is very slow from year to year. So, currently indicated a change of the exterior characteristics. This paper explain the exterior characteristics of female Gembrong Goat was found in Karangasem Regency, Bali Province.

Methodology

The study of Gembrong Goat in Karangasem Regency, Bali province was conducted in May-June 2016. The data used for this study were collected from 12 Does (adult female with age range 1-3 years old), that was found located in Bug-Bug village, Abang village, and tumbu village (location of conservation). Gembrong Goat were observed including face appearance, coat colour, horn, ear appearance. Head and body measurements were obtained, including head length, head girth, ear length, chest girth, body length, withers height, hip height. The Gembrong goats were raised in similar management systems (traditional system) at those locations by small farmer.

The following linear head and chest girth measurements were measured by using the tailor’s type measure (butterfly© in cm), for body length, withers height, hip height measurements were measured by using the stick measure (FHK© in cm). For this data collection for face appearance, coat colour, horn, ear appearance by using Guideline for Phenotypic Characterization of Animal Genetic Resources (FAO, 2012). The descriptive statistical analysis was used due to the small size of goat was found and we presented by comparing with previous research was done.

Result and Discussion

Qualitative character of adult female Gembrong goat was found in Karangasem regency such as face/head, horn, ear and hair coat. The observation based on Guidelines for Phenotypic Characterization of Animal Genetic Resources (FAO, 2012). The result showed that female Gembrong goat have straight or flat face appearance, present horn and the shape is straight, small and pointed, erect and straight ear or hanging to the side. Hair coat type is straight hair, smooth and glossy. The previous research report that female Gembrong goat was observed, faceline is a bit concave, have small horns, ears are straight upright although hanging ears are also noticed (Budisatria et al., 2014).

Result of hair coat colour dominant is white, brown and black with a percentage 50%, 25% and 25% respectively. in contrast to the previous report by Fahmilia et al. (2004) that dominant body color of goat Gembrong generally white 61.51%, and several is light brown
23.08% and brown 15.38% as well as the results of observations obtained by Setiadi et al. (1998), where the white color is 91.16% and the rest is light brown and black. The frequency decrease of this dominant (white) color and emergence of new (black) color may be related to uncontrolled matting patterns with another breeds likely Peranakan Etawah (PE) and kacang by farmers, because the population of Gembrong goat is very small.

The mean and standard deviation of head and body measurements that was obtained from the study are presented in Table 1. Table 1 show the comparison of result and previous study about the head and body size of female gembrong goat. The result of head size was obtained in this study greater than with the previous study (2014 and 2015), especially the head length and for ear length was similar (2015) and smaller than study was reported in 2004. Similar from the table, all of the body size of Gembrong goat was measured on this study lower than study was reported in 2004, 2014 and 2015. Body length, withers height and hip height of Gembrong does from this study were also lower with Kacang does, as reported by Setiadi et al (2000) which was 47-55 cm, 55,26±1,31 cm and 58,40±1,61 cm, respectively. However, chest girth of Gembrong does were bigger than Kacang does which having chest girth 62,11±1,49 cm (Setiadi et al., 2000).

Table 1. The mean and standard deviation of head and body measurements that was obtained from the study and previous study

<table>
<thead>
<tr>
<th>No</th>
<th>Trait</th>
<th>Mean±SD (cm)(^a)</th>
<th>Mean±SD (cm)(^b)</th>
<th>Mean±SD (cm)(^c)</th>
<th>Mean±SD (cm)(^d)</th>
<th>Mean±SD (cm)(^e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>head length</td>
<td>18,20±1,14</td>
<td>16,83±2,14</td>
<td>14,41±1,32</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>head girth</td>
<td>11,30±0,82</td>
<td>11,50±1,05</td>
<td>8,18±0,60</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>ear length</td>
<td>14,20±2,04</td>
<td>14,17±1,33</td>
<td>-</td>
<td>-</td>
<td>18,50±3,54</td>
</tr>
<tr>
<td>4</td>
<td>chest girth</td>
<td>67,42±3,21</td>
<td>70,00±5,06</td>
<td>64,45±5,45</td>
<td>71,00±6,90</td>
<td>70,90±3,47</td>
</tr>
<tr>
<td>5</td>
<td>body length</td>
<td>48,50±4,40</td>
<td>56,17±4,63</td>
<td>57,64±5,71</td>
<td>56,70±6,90</td>
<td>62,60±1,14</td>
</tr>
<tr>
<td>6</td>
<td>withers height</td>
<td>51,50±3,21</td>
<td>55,08±1,69</td>
<td>53,91±4,74</td>
<td>59,80±4,90</td>
<td>64,20±4,55</td>
</tr>
<tr>
<td>7</td>
<td>hip height</td>
<td>54,58±3,55</td>
<td>57,42±1,80</td>
<td>-</td>
<td>-</td>
<td>66,60±4,56</td>
</tr>
</tbody>
</table>

SD: Standard deviation
\(^a\) this study; \(^b\) Hasinah et al., 2015; \(^c\) Zein and Sulandari, 2014; \(^d\) Maharani et al., 2014; \(^e\) Fahmilia et al., 2004.

The difference of head and body size, in case was lower with the previous study was reported several researcher (Table 1) probably caused by an uncontrolled matting patterns, may be like inbreeding, because lack of the Gembrong buck and there isn’t rotation of mating. In difference case, the decrease of body size may be caused by matting with another breeds likely Kacang goat by farmers.

Conclusion

Based on the body size from the study and compared to the previous research, Gembrong Goat was raised with traditional management by small farmer in Karangasem, Bali was indicates a decrease in genetic quality.
Reference

Extérieur Caractéristiques de la Brebis Gembrong à Karangasem, Bali

Bayu Andri Atmoko1, I Gede Suparta Budisatria2, Sigit Bintara3, Dyah Maharani3, I Made Londa3

1Faculty of Animal Science, Universitas Gadjah Mada, Yogyakarta, Indonesia
2The Assessment and Development Institute for Agricultural Technology, Bali Province, Indonesia
budisatria@ugm.ac.id

Introduction

Gembrong is one of local genetic resources as an Indonesian indigenous goats was found in Karangasem, Bali. Gembrong goat mostly has the long shiny white hair that covering its whole body including its necked and face.

The recent research found that the population of Gembrong goats at Karangasem district were only 26 heads, (Budisatria et al., 2014; Maharani et al., 2014; and Bintara et al., 2015).

Conserving genetic of domestic animals such as Gembrong goats urgently required, primarily because their population decreased annually and once lost, genetic material is irreplaceable (budisatria et al., 2014).

Several studies have reported on exterior characteristic of Gembrong goats. However, the population of the Gembrong goats is limited, and its development is very slow currently indicated a change of the exterior characteristics. This paper explain the exterior characteristics of female Gembrong Goat was found in Karangasem Regency, Bali Province.

Methodology

Gembrong Goat were observed including face appearance, coat colour, horn, ear appearance by using Guideline for Phenotypic Characterization of Animal Genetic Resources (FAO, 2012). Head and body measurements were obtained, including head length, head girth, ear length, chest girth, body length, withers height, hip height were measured by using the stick measure (FHk in cm).

The descriptive analysis was used due to the small size of goat was found and we presented by comparing with previous research.

Result and discussion

The result showed that female Gembrong goat have straight or flat face appearance, present horn and the shape is straight, small and pointed, erect and straight ear or hanging to the side. Hair coat type is straight hair, smooth and glossy.

Table 1. The mean and standard deviation of head and body measurements of female gembrong goat that was obtained from the study and previous study

<table>
<thead>
<tr>
<th>No</th>
<th>Trait</th>
<th>Mean±SD (cm)</th>
<th>Mean±SD (cm²)</th>
<th>Mean±SD (cm)</th>
<th>Mean±SD (cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>length head</td>
<td>18.20±1.14</td>
<td>16.63±2.14</td>
<td>14.41±1.32</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>head girth</td>
<td>11.30±0.82</td>
<td>11.50±1.05</td>
<td>8.18±0.60</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>ear length</td>
<td>14.20±2.04</td>
<td>13.17±2.33</td>
<td>-</td>
<td>18.50±3.54</td>
</tr>
<tr>
<td>4</td>
<td>chest girth</td>
<td>67.42±3.21</td>
<td>70.00±5.06</td>
<td>64.45±4.55</td>
<td>71.00±6.90</td>
</tr>
<tr>
<td>5</td>
<td>body length</td>
<td>48.50±4.40</td>
<td>56.17±4.63</td>
<td>57.64±5.71</td>
<td>56.70±6.90</td>
</tr>
<tr>
<td>6</td>
<td>withers height</td>
<td>51.50±3.21</td>
<td>55.08±6.99</td>
<td>53.91±4.74</td>
<td>59.80±4.90</td>
</tr>
<tr>
<td>7</td>
<td>hip height</td>
<td>54.58±3.55</td>
<td>57.42±1.80</td>
<td>-</td>
<td>66.60±4.55</td>
</tr>
</tbody>
</table>

SD: Standard deviation
this study, 1Hasinah et al., 2015; 2Zein and Sulandari, 2014; 3Maharani et al., 2014; 4Fahmilia et al., 2004.

Result of hair coat colour dominant is white, brown and black with a per sentage 50%, 25% and 25% respectively. In contrast to the previous report by Fahmilia et al. (2004) that dominant body color of Gembrong goat generally white 61.51%, and several is light brown 23.08% and brown 15.38%. The frequency decrease of this dominant (white) color and emergence of new (black) color may be related to uncontrolled matting patterns with another breeds likely Peranakan Etawah (PE) and kacang by farmers, because the population of Gembrong goat is very small.

The result of head size was obtained in this study greater than with the previous study (2014 and 2015), especially the head length and for ear length was similar (2015) and smaller than study was reported in 2004. All of the body size of Gembrong goat was measured on this study lower than study was reported in 2004, 2004 and 2015. The difference of head and body size was lower with the previous study probably caused by an uncontrolled matting patterns, may be like inbreeding, because lack of the Gembrong buck and there isn’t rotation of mating. In difference case, the decrease of body size may be caused by mating with another breeds likely Kacang goat by farmers.

Conclusion

Based on the body size from the study and compared to the previous research, Gembrong Goat was raised with traditional management by small farmer in Karangasem, Bali was indicates a decrease in genetic quality.

Reference

Acknowledgement

The Study was supported by the grant from Indonesia Higher duca tion (DIKTI) in PMDSU program scheme with contract number 1996/UN1-PJI/II/TDT-2/2017
CERTIFICATE

This certifies

Bayu Andri Atmoko

as Poster Presenter

in the Sixth International Conference on Sustainable Animal Agriculture for Developing Countries (SAADC 2017) "Wisdom of Using Local Resources for Development of Sustainable Animal Production in Developing Countries" Batu, Indonesia, October 16-19, 2017

Organized by and co-organized by

Australian Aid

UPM

My Royal

Murah, Faculty of Animal Husbandry

Brawijaya University

Chairman of International Advisory Board

The Sixth SAADC 2017