Table of Contents

1 Effect of resin-coating technique on coronal leakage inhibition in endodontically treated teeth
 Rena Maruoka, Toru Nikaido, Masaomi Ikeda, Richard M. Foxton, and Junji Tagami

7 Regulation of osteoprotegerin and receptor activator of nuclear factor-kappa B ligand by interleukin-10 in human dental follicle cells
 Hong Qian, Xuepeng Chen, Yingchun Bi, Yan Wang, Yinzhong Duan, and ZuoLin Jin

15 Model-based biomechanical dental implant optimization in bone-implant system
 Jian-Ping Geng, Wei Xu, and Wei-Qi Yan

23 A three-dimensional finite element analysis of a tilted molar as a fixed partial denture abutment
 Jun Jia, Yuanyuan Duan, ShaoFeng Zhang, Jipeng Liu, Lei Jin, and Jianxue Zhou

27 The difference of antibacterial effect of neem leaves and stick extracts
 Widowati Siswomihardjo, Siti Sunarintyas Badawi, Masahiro Nishimura, and Taizo Hamada

31 Importance of diagnosis by computer tomography for mini dental implants planning: A clinical report
 Masahiro Nishimura, Shinsuke Sadamori, Fumio Suehiro, Kensuke Sekiya, Haruki Nishimura, and Taizo Hamada
Naomi Tanoue, DDS, PhD (Nagasaki University Hospital of Medicine and Dentistry, Nagasaki, Japan)
Yoshitiro Tsukiyama, DDS, PhD (Kyushu University, Fukuoka, Japan)
Cun-Yu Wang, DDS, PhD (The University of Michigan, Ann Arbor, USA)
Kan Xu, DDS, PhD (Shanghai Second Medical University, Shanghai, China)
Pecheng Xu, DDS, MSD (Shanghai Xuhui Dental Hospital, Shanghai, China)
Takayuki Yoneyama, DDS, PhD (Tokyo Medical and Dental University, Tokyo, Japan)
Jianzhong Zhang, DDS, PhD (Shanghai Second Medical University, Shanghai, China)

Assistant to the Editor
Liang Han (Navy General Hospital, Beijing, China)
Noriko Hisamatsu, Hiroaki Yanagida (Nagasaki University, Nagasaki, Japan)

Sponsoring Organization
Japan China Medical Association (Board Chairman: Yasuhiro Morioka, MD), since 2002
Kanda-Surugadai Society for Fixed Prosthodontics, since 2005

Editorial Office
Editor: Hideo Matsumura, E-mail: matsumura@dent.nihon-u.ac.jp
Department of Fixed Prosthodontics, Nihon University School of Dentistry, 1-8-13, Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan. Tel: +81-3-3219-8145, Fax: +81-3-3219-8351

Instructions to Authors
Manuscripts should be submitted by e-mail and/or by triplicate manuscript to the Editor, H. Matsumura. Submission of a manuscript indicates a tacit understanding that the article is not actively under consideration for publication with another journal. Once a paper is accepted, the authors have transferred the copyright of the article to the International Chinese Journal of Dentistry. Authors should provide their full address, including the e-mail address and fax number, for correspondence. All submitted articles will be acknowledged upon receipt then sent for review. They will not be returned. On notification of acceptance for publication, authors are strongly recommended to send a MS Word file of the manuscript on a diskette or by e-mail, along with a hard copy to the corresponding Editorial staff.

The manuscript, including an abstract (up to 250 words), keywords (up to six), references, tables, figures and figure captions (up to size 7x9 cm), should be clearly typed in American English, double-spaced and on one side only on A4-sized paper with an ample margin around the text. The total length of the paper should not exceed 10,000 words or word-equivalents. Clinical Report and Dental Technology article are limited to 2,000 words or word-equivalents. Legible, compact notation should be used, conforming to current practice. Each symbol must be clear, either typed neatly and properly aligned to distinguish superscripts and subscripts. Sections of the article to be numbered with Arabic numerals, as are the tables and figures. Each page of the manuscript should be numbered sequentially.

The manuscript should include the following:
1. Title page: Title, Name of authors, Professional address.
2. Abstract: Should be limited to 250 words and typed double-spaced on a separate page. There should be no abbreviations in the abstract. Must be structured for all articles except clinical reports, dental techniques, and tips. It should include the 1) Purpose, 2) Material(s) and Method(s), 3) Result(s), 4) Conclusion(s), and 5) Key Words.
3. Introduction: A concise introduction briefly outlining the purpose of the article and previous relevant studies.
4. Materials and Methods: Describe clearly the procedure, employed materials used (item manufacturer’s city, country) and the type of statistical analysis used.
5. Results: Report results without subjective comment of references.
6. Discussion: Section for subjective comments.
7. Acknowledgements: Mainly directed for granting authorities towards financial support and permission to publish the article.
8. References: Reference are recommended to be cited from MEDLINE journals. The format should conform to that set forth in “Uniform Requirements for Manuscripts Submitted to Biomedical Journals” (Ann Intern Med 1997; 126: 36–47). Journal titles should conform to the abbreviations in the Cumulative Index Medicus.
9. Tables and figures should further be numbered in the order in which they are cited in the text. Each table and each figure could be edited in the text without a separate page, the maximum size is 7x9 cm. Color images should be CMYK and at least 300 DPI. Gray scale images should be at least 300 DPI. Combination gray scale and line art should be at least 1200 DPI. All images must be accompanied by a digital proof, not a laser print or photocopy. If the figures are to be reproduced in color, the digital proof must be in color. The cost of color illustrations will be charged to the author. A list of figure captions should be given on a separate page. Footnotes are not acceptable.
Examples of References Format
For journal articles:
Xu ER, Li IM, Quan QJ, et al. Articulation. Int Chin J Dent 2001; 1: 12-9. (seven authors or more)
List all authors when six or fewer; when seven or more, list first three and add et al.

For books:

There will be no page charge for ICJD members and US $80 each article for non-members. Color illustrations charge will be US $400 each page (maximum 8-12 color figures) for both members and non-members. There will also provide a professional language edit service for articles from non-English country, and the service fee will be discussed case by case. Offprint will be prepared on request.

Copyright statement
In accordance with the Copyright Act of Japan, Hong Kong, and USA, all manuscripts must be accompanied by the following statement signed by all authors: The undersigned author(s) transfer all copyright ownership of the manuscript (title of the article) to the International Chinese Journal of Dentistry, in the event the work is published. The undersigned author(s) warrant(s) the article is original, does not infringe upon any copyright or other proprietary right of any third party, is not under consideration for publication by any other journal, and has not been published previously. The author(s) confirm that they have reviewed and approved the final version of the manuscript.

MEMBERSHIP/PRICE INFORMATION
ISSN: 1608-0688; Vol. 7/2007; 4 Issues: 80 US dollars
Subscription and back issues: Please contact the following address:
ICJD Japan Editorial Office
c/o Department of Fixed Prosthodontics, Nihon University School of Dentistry
1-8-13, Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan
Tel: +81-3-3219-8135, Fax: +81-3-3219-8351, E-mail: matsumura@dent.nihon-u.ac.jp

International Chinese Journal of Dentistry 2007 Outstanding Article Award (J.P. Geng Award)

International Chinese Journal of Dentistry announces the annual Outstanding Article Award.

Award:
A cash prize of US$ 500 and a certificate of commendation are awarded for the most outstanding article published in the International Chinese Journal of Dentistry.

Criteria:
Original articles, clinical reports, and dental technology articles published in the Journal between issue 1 and issue 4 are considered for the award. The winning article will be selected by a committee on the basis of scientific impact on the dental professional communities, and interest to the readers. The 2007 Award is sponsored by the International Chinese Journal of Dentistry and the following award sponsors.

Award Sponsors:
GC Corporation, Tokyo, Japan, http://www.gcdental.co.jp
Kuraray Medical Inc., Tokyo, Japan, http://www.kuraray.co.jp/dental
Shofu Inc., Kyoto, Japan, http://www.shofu.co.jp
Sun Medical Co., Ltd., Moriyama, Japan, http://www.sunmedical.co.jp
Toho Dental Products, Saitama, Japan
Tokuyama Dental Corp., Tokyo, Japan, http://www.tokuyama-dental.co.jp
3M Health Care Limited, Sagamihara, Japan, http://www.3m.com/espe/

2006 Award Winners:
Naomi Tanoue, Takako Ide, Koji Kawasaki, Kiyoshi Nagano, and Takuo Tanaka
Survival of resin-bonded fixed partial dentures made from a silver-palladium-copper-gold alloy
The difference of antibacterial effect of neem leaves and stick extracts

Widowati Siswomihardjo, DDS, MSc, PhD,\(^a\) Siti Sunarintyas Badawi, DDS, MSc, PhD,\(^a\) Masahiro Nishimura, DDS, PhD,\(^b\) and Taizo Hamada, DDS, PhD\(^b\)

\(^a\)Department of Biomaterials, Faculty of Dentistry, Gadjah Mada University, Jogjakarta, Indonesia
\(^b\)Department of Prosthetic Dentistry, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan

Purpose: This study determined the antibacterial effect of ethanolic neem leaves and stick extract in inhibiting the growth of *Streptococcus mutans*.

Materials and Methods: Two different parts of neem, leaves and stick, extracts using ethanol were prepared at 10% and 20% (w/v: extraction powder/water) respectively. Each extractions were dropped on an MHA agar that had been inoculated with *Streptococcus mutans*. Distilled water was used as the control. After 24 hours of incubation, the inhibition diameters were measured. Collected data were analyzed by analysis of variance (ANOVA) followed by Least Significance Difference (LSD) at a 95% confidence level.

Results: The inhibition zone value of neem extracts on *Streptococcus mutans* showed that neem leaves extract had less inhibition value than neem stick extract on all concentrations. The ANOVA showed that there were significant influence of neem extracts (p<0.001), neem concentrations (p<0.001), and neem extract-concentration (p<0.003) on *Streptococcus mutans* inhibition.

Conclusion: Neem leaves and stick ethanolic extracts had antibacterial effect on *Streptococcus mutans*. Neem stick extract had higher antibacterial properties than the leaves extract. (Int Chin J Dent 2007; 7: 27-29.)

Key Words: antibacterial effect, neem extracts, *Streptococcus mutans*.

Introduction

The use of therapeutic plants has been beneficial to the oral health throughout the world for more than thousands years. Over centuries, different parts of neem plant, stem bark, root, leaves, seeds, etc., have been used in the Indian folk medicine. The advantage of traditional medicine is that it is less likely to form allergies and side effects. Widespread use of antibiotics in dental practice gives microorganisms enhanced opportunities for the development of resistance to a broad spectrum of antibiotics.\(^1\) Neem is one of the most widely researched tropical trees as the source of therapeutic agents. The chemical compositions of neem extract have been analyzed since twenty years before. Many active components of neem, azadirachtin, salamin, meliantriol, or nimbin etc., have been identified, and the most active ingredient is reported as azadirachtin.\(^2\) Clinical studies have shown that the neem leaves extract decreased the dental plaque index and *Streptococcus mutans* and *Lactobacilli* growth.\(^3,4\) An in vitro study has demonstrated that aqueous extract from Neem leaves inhibits biofilm formation and adhesion in composite resin by *Candida albicans*.\(^5\) Also it has demonstrated that formation of the bacterial plaque has been positively affected by aqueous neem stem bark extract.\(^6\) Many experiments have tested the aqueous neem extract. On the other hand, the methanolic extract of neem has reported to have in vitro antiviral activity against group B coxsackieviruses\(^7\) or against *Staphylococcus Aureus, Escherichia Coli, Pseudomonas Aeruginosa*, and *Candida albicans*.\(^8\) The extraction methods might affect the antibacterial efficiency. However, it has not yet well examined the antibacterial effects of ethanolic extract of neem toward *Streptococcus mutans* that has been recognized as the major organism involved in caries. Based on these backgrounds, this study was aimed to compare the influence of ethanolic neem leaves and stick extract in inhibiting the growth of *Streptococcus mutans*.
Materials and Methods

Extract preparation

Neem leaves or sticks, 300 g, were selected, washed, cut into small pieces, and dried in an oven (45-50°C) for 3 days. Neem leaves or sticks were blended using a blender, then extracted using 96% ethanol for 10 hours. The extraction was carried out using a soxhlet instrument as described previously. Three doses of the dried extractions, 20 g of extract in 100 mL distilled water (20%), 10 g of extract in 100 mL distilled water (10%), and no extract in 100 mL distilled water (control) were prepared.

Bacterial sensitivity test

The Streptococcus mutans sensitivity test was carried out using the agar diffusion disc technique. The Streptococcus mutans were cultured in the MHA agar for 24 hours at 37°C. Five colonies were transferred into 2 mL of BHI. Its turbidity was compared to the Standard Brown III solution. The suspension (1 mL) was taken using a micropipette and inoculated on the MHA agar petri dish. A sterile spreader was used to spread the suspension evenly on the agar. Neem extracts (50 μL) at each concentration were dripped into the holes. The petri dish was incubated at 37°C for 24 hours.

Inhibited zone measurement

The inhibited zone was measured as the area around the hole where no Streptococcus mutans was growing. The required area was measured from the edge of the hole to the outer border of bacterial inhibition. The diameter was measured using a sliding caliper with a precision of 0.01 mm. Each measurement was taken three times and the average of the three measurements for each zone was recorded.

Statistical analysis

Statistical analysis of the data was carried out using the analysis of variance (ANOVA). The ANOVA was then followed by post-hoc tests (Tukey-Kramer multiple comparison test).

Results

The average and standard deviations of the inhibited zones of Streptococcus mutans on MHA agar treated with neem extracts were shown on Table 1. The result showed that the antibacterial effects were significantly different among control, neem leaves, and stick extracts (p<0.001; ANOVA). Post-hoc test (Tukey-Kramer) showed that neem stick extract (at 20%) had significantly higher antibacterial property than the leaves extract (p<0.01). The neem stick extract had antibacterial properties as concentration dependent manner (p<0.01).

Table 1. The inhibition zone value of neem extract toward Streptococcus mutans.

<table>
<thead>
<tr>
<th>Extract concentration (%)</th>
<th>Neem leaves Mean</th>
<th>Neem stick Mean</th>
<th>SD</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 (control)</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>NS</td>
</tr>
<tr>
<td>10</td>
<td>3.089 a</td>
<td>4.022 a, b</td>
<td>0.713</td>
<td>0.661</td>
</tr>
<tr>
<td>20</td>
<td>3.857 a</td>
<td>5.778 a, b</td>
<td>0.408</td>
<td>0.211</td>
</tr>
</tbody>
</table>

SD: Standard deviation. NS: Not significant between the properties of leaves and stick extracts. a, significantly different from control (p<0.001); b, significantly different between different concentrations (p<0.001).
Discussion

In this study, we have shown that the ethanolic neem stick extract had higher antibacterial properties than the leaves extract. Neem leaves had the active component of azadirachtin (1-3%), whereas the active component of neem stick is tannin (6%). Both the azadirachtin and tannin belongs to the polyphenol group. The difference in the antibacterial effect was probably because of the different percentage in the active component of phenol groups in both neem leaves and sticks. Neem stick extract possessed a wide spectrum of antibacterial action against gram negative and gram positive microorganism. Hydrolyzable tannins, gallottannins from crude drugs has an inhibitory activity against glucosyltransferase from Streptococcus mutans. Gallottannin is hardly soluble in water but easily in ethanol. The reason that the neem stick extraction had higher antibacterial properties than the leaves extraction might be caused by the extraction solvent in this study differ from previous studies.

Table 2 also showed that both extract and concentration of neem influence the inhibition zone value. The neem leaves extract had less inhibition zone value comparing to the neem stick extract on the concentration of 10 and 20% by ethanol extraction method. By this finding, it seems necessary to study further about the characteristic of the active components and their extraction methods which affect the antibacterial properties.

References

Correspondence to:

Dr. Masahiro Nishimura
Department of Prosthetic Dentistry, Division of Cervico-Gnathostomatology
Graduate School of Biomedical Sciences, Hiroshima University
1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
Fax: +81-82-257-5684 E-mail: maakun@hiroshima-u.ac.jp

Received January 29, 2007. Accepted March 9, 2007.
Copyright ©2007 by the International Chinese Journal of Dentistry.