The 7th INTERNATIONAL SEMINAR ON TROPICAL ANIMAL PRODUCTION
“Contribution of Livestock Production on Food Sovereignty in Tropical Countries”

PROCEEDINGS

September 12 – 14, 2017
Yogyakarta, Indonesia

ISBN: 978-979-1215-29-9

Organized by:
Faculty of Animal Science, Universitas Gadjah Mada Yogyakarta
Indonesian Society for Sustainable Tropical Animal Production [ISSTAP]
INDONESIA, 2017
PROCEEDINGS
The 7th ISTAP
International Seminar
on Tropical Animal Production

September 12 – 14, 2017, Yogyakarta, Indonesia

“Contribution of Livestock Production on Food Sovereignty in Tropical Countries"

Published by:
Faculty of Animal Science
Universitas Gadjah Mada

ISBN: 978-979-1215-29-9

©2017, Faculty of Animal Science Universitas Gadjah Mada

No part of this publication may be reproduced or transmitted in any forms or by any means, electronic or mechanical, now known or heretofore invented, without written permission from the publisher.

Address: Faculty of Animal Science, Universitas Gadjah Mada
Jl. Fauna 3, Kampus UGM, Bulaksumur, Yogyakarta 55281, Indonesia
Phone: +62-274-513363/+62-274-560868
Fax: +62-274-521578
Email: istap@ugm.ac.id
Website: www.istap.ugm.ac.id
Editor-in-Chief

Cuk Tri Noviandi
(Universitas Gadjah Mada, Indonesia)

Editorial Board

Abdul Razak Alimon *(Universiti Putra Malaysia)*
Adiarto *(Universitas Gadjah Mada, Indonesia)*
Bambang Suhartanto *(Universitas Gadjah Mada, Indonesia)*
Endang Baliarti *(Universitas Gadjah Mada, Indonesia)*
F. Trisakti Haryadi *(Universitas Gadjah Mada, Indonesia)*
Ismaya *(Universitas Gadjah Mada, Indonesia)*
Jamhari *(Universitas Gadjah Mada, Indonesia)*
John Moran *(Profitable Dairy System, Australia)*
Liang Chou Hsia *(National Pingtung University of Science and Technology, Taiwan)*
Metha Wanapat *(Khon Kaen University, Thailand)*
Nono Ngadiyono *(Universitas Gadjah Mada, Indonesia)*
Nurliyani *(Universitas Gadjah Mada, Indonesia)*
Ristianto Utomo *(Universitas Gadjah Mada, Indonesia)*
Sudi Nurtini *(Universitas Gadjah Mada, Indonesia)*
Sumadi *(Universitas Gadjah Mada, Indonesia)*
Tety Hartatik *(Universitas Gadjah Mada, Indonesia)*
Vu Dinh Ton *(Vietnam National University of Agriculture)*
Wihandoyo *(Universitas Gadjah Mada, Indonesia)*
Yuny Erwanto *(Universitas Gadjah Mada, Indonesia)*
Zaenal Bachriddin *(Universitas Gadjah Mada, Indonesia)*
Zuprizal *(Universitas Gadjah Mada, Indonesia)*

Editorial Staff

LIST OF CONTENTS

PREFACE .. iii
REPORT FROM ORGANIZING COMMITTEE .. iv
WELCOME ADDRESS ... v
OPENING REMARKS ... vi
LIST OF CONTENTS .. vii

PLenary SESSIONS

1. Feeding Strategies on Farms to Improve Livestock Productivity and Reduce Methane Production
 Metha Wanapat, Thiwakorn Ampapon, Chaowarit Mapato, Burarat Phesatcha and Bounnaxay Viennasay ... 1-9

2. Success Stories in Asia’s Quest for Increasing its Domestic Milk Production
 John Moran, Geoff Walker and Mohammad Abdus Salam 10-19

3. The Use of Modern Technology for Production of Traditional Tropical Small Ruminants
 Liang Chou Hsia .. 20-23

4. Role of Livestock Production in Farm Households’ Economy and Challenges in Perspective of Sustainable Development
 Vu Dinh Ton .. 24-32

5. Halal Life Style and Global Trade
 Tridjoko Wisnu Murti .. 33-39

6. Shelf-life Extension of Fresh and Processed Meat Products by Various Packaging Applications
 Keun Taik Lee ... 40-51

Ruminant Nutrition

23306-45670-1-SM
Naifatul Umami, Bambang Suhartanto, Ali Agus, Bambang Suwignyo, Nilo Suseno, Farrah Siti Zakkiyah, and Tim Cookson ... 52-56

24926-50079-2-SM
Bambang Suwignyo, Bambang Suhartanto, Briyan Ahmad Suparja, Wahyudin, and Galih Pawening ... 57-61
The Effect of Rhizobium Inoculation and Harvesting Time on the Quality and Biomass Productivity of Peanut Straw (Arachis hypogea) in Sandy Soil
Nafiul Umami, Bambang Suhartanto, Ristianto Utomo, Putri Dwinda Heristiningrum

Feed Evaluation based on Tannin Content and Gas Production of Twelve Tropical Feedstuffs
Kustantinah Adiwinarta, Edwin Indarto, Zuprizal, Cuk Tri Noviandi, Nanung Danar Dono, and Fajar Aji Mukti

The Effect of Starter Addition on Digestibility Value of Complete Feed Fermentation-Based Kumpai Minyak grass (Hymenachne amplexicaulis)
Anggriawan N.T.P, Andriyani Astuti, Ristianto Utomo, and Subur Priyono Sasmito Budi

Digestibility and Ruminal Fermentation Characteristic of Native Grass Silage Supplemented with Different Levels of Leucaena leucocephala
Ryan Aryadin Putra, Cuk Tri Noviandi, and Nafiul Umami

Quality of Sorghum Silage Fermented with Starch of Gebanga Flour (Corypha gebanga) and Lactic Acid Bacteria as Additives
Lilo J. M. Christna Kale Lado, Ristianto Utomo, Cuk Tri Noviandi, and Nono Ngadiyono

Physical Characteristics Evaluation of Kumpai Minyak Grass (Hymenachne amplexicaulis) Silage
Nur Muhammad, Andriyani Astuti, Ristianto Utomo, and Subur Priyono Sasmito Budi

In Vitro Digestibility of Fermented Rice (Oryza sativa) Straw and Cassava (Manihot utilissima) Leaves Basal Feed Supplemented with Cassava Tuber
Cuk Tri Noviandi, Ristianto Utomo, and Zazin Mukmila

Physical and Organoleptic Quality of Pellet with Differences Tuber Type as Binder
Andriyani Astuti, Chusnul Hanim, and Hanivan Akil

In vitro Digestibility and Gas Production Characteristics of Four Brachiaria Cultivars as Fresh Fodder
Dewi Ratih Ayu Daning and Riyanto

MONOGASTRIC NUTRITION AND PRODUCTION
The Effect of Daily Activities Stingless Bees of Trigona sp. on Honey Production
Agussalim, Ali Agus, Nafiul Umami, and I Gede Suparta Budisatria
Feed Evaluation based on Gas Production of Twelve Tropical Feedstuffs

Kustantinah Adiwimarta1, Edwin Indarto1, Zuprinal1, Cuk Tri Noviandi1,
Nanung Danar Dono1, and Fajar Aji Mukti1
1Faculty of Animal Science, University Gadjah Mada, Yogyakarta, Indonesia
Corresponding email: kustantinah@ugm.ac.id

ABSTRACT

This study was conducted to determine the chemical composition and production of gas by fermentation in the rumen of twelve tropical feedstuffs commonly utilized which are fodder trees and shrub species, namely red flower turi (Sesbania grandiflora L) leaves and stems skin, white flower turi (Sesbania grandiflora) leaves and stems skin, leucaena (Leucaena leucocephala) leaves, Calliandra (Calliandra calothyrsus) leaves, ketapang (Terminalia catappa L.) leaves, walnut (Canarium indicum L.) leaves, teh-tehan (Duranta repens) leaves, tea (Camellia sinensis) leaves, bamboo (Bambusa arundinacea) leaves, and mahogany (Swietenia mahagoni) leaves. Measurement of gas production was performed by in vitro at 2, 4, 8, 18, 30, 48, 72 h of incubation. Tannin activity was measured in each sample at the time of measurement of gas production by dividing into two groups: the one with polyethylene glycol (PEG) and the other one without PEG. Result showed that the Crude protein (CP) of the samples studied ranged from 11.33 - 32.42% the lowest was found in mahogany (Swietenia mahagoni) leaf and highest was obtained in sesbania grandiflora (red flower). The content of fiber (CF) ranged from 10.31 to 32.58%. While the total tannins showed ranging from 0.22 to 12.07%, the lowest total tannin concentration was found in sesbania grandiflora (white flower) stems skin of 0.22% and the highest obtained at Terminalia catappa L is 12.07%. Measurement of gas production in vitro shows that In all samples, gas production increased when PEG was given. Based on tannin activities measurement in present study, the use of PEG improved rumen microbial degradation. The measurements of tannin content showed that condensed tannins were varied from 0.05% (DM) in white Turi stem to 3.34 % (DM) in Mahogany leaves.

Keywords: Evaluation, Tropical-feedstuffs, Gas-production

INTRODUCTION

Forages, typically legumes and other fodders, are rich of phenolic compounds, such as tannin (Kustantinah 2012). This substance is known to have protective effect against predators. From ruminant nutrition perspective, tannin-rich plants have both valuable and harmful effects. The beneficial effects of tannin is including: antiparasitic, antihelminthic, anticoccidida, and decreasing methanogene (Cieslak et al., 2013; Kustantinah et al. 2014). However, one of the negative effects of tannin is that tannin binds protein, makes some of the organic matters (protein) unavailable for ruminal degradation. Study to evaluate the availability of organic matter can be done by in-vitro gas production technique. The restriction in measuring fermentation through gas production method is on the presence of tannin or phenolic compound in the forage or fodders. As stated before, the bond between tannin and organic matter (protein) reduces the degradation process in the rumen, which in turn will lower gas productions. This study evaluate the use of Poly Ethylene Glycol (PEG) to
interfere the tannin-protein bond, hence increase organic matter degradation and positively
effect on maximizing gas production as the result of fermentation.

MATERIALS AND METHODS

Twelve feedstuffs from 10 kinds of forages (Table 1) were used in this study, that
commonly used by the local farmers to feed their goats. The forages were planted in
Yogyakarta. Evaluations that have done were based on the chemical composition and
fermentation gas production according to the method of Menke and Steingass (1989). Forages
which evaluated were taken from edible portion of the plants. Analysis for gas production
were done by in-vitro according to the method generated by Menke and Steingass (1988), that
has been modified by Blummel and Orskov (1989). Sample used for fermentation gas
production were dried at the temperature of 55°C, ground to pass screen with diameter 1 mm
(Tillman et al., 1998; Kustantinah, 2015).

Table 1. Twelve locally planted forages that used in this study

<table>
<thead>
<tr>
<th>No</th>
<th>Local name</th>
<th>Forages samples</th>
<th>Latinness name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>White flower Turi, leaves part</td>
<td>Seshania grandiflora</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>White flower Turi, stem skin part</td>
<td>Seshania grandiflora</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Mahogany leaves</td>
<td>Saitenia mahagonyn</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Calliandra leaves</td>
<td>Calliandra calothyrsus</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Bamboo leaves</td>
<td>Bambusa arundinacea</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Canary leaves</td>
<td>Canarium indicum L</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Tea leaves</td>
<td>Camellia sinensis</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Ketapang leaves</td>
<td>Terminalia catappa L.</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Leucaena leaves</td>
<td>Leucaena leucocephala</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Teh-tehan leaves</td>
<td>Duranta repens</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Red flower Turi, leaves part</td>
<td>Seshania grandiflora</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Red flower Turi, stem skin part</td>
<td>Seshania grandiflora</td>
<td></td>
</tr>
</tbody>
</table>

Gas production measurement was performed using rumen fluid as the source of
microbes. The ruminal fluid was collected from cattle that fed King Grass (Pennisetum
hybrid) and wheat pollard, with the ratio of 70:30. To identify whether the samples was
contained tannin or not, each sample was divided into 2 tubes, each tube contained 200 mg
DM. In the first tube, after the sample was weighed, poly ethylene glycol (PEG) was added at
the same level of the sample. If the sample contains tannin, the tannin will be bound with
PEG (Blummel and Orskov, 1989). The measurements of gas production were done at 2, 4, 8,
18, 30, 48, and 72 hour after fermentation. Calculation of the gas produced by fermentation
were done using Neway program (Chen, 1994), based on equation Y = a+b(1-e^{-ct}), where Y =
Volume of total gas produced in time t; a = gas production from easily degraded fraction; b =
gas production from potentially degraded fraction; and c = rate of gas production of b fraction
(Chen, 1994; Kustantinah, 2012). Variables observed in this study were chemical composition of
the sample, gas production from easily degraded fraction (a fraction); gas production from
potentially degraded fraction (b fraction); gas production from total fraction degraded and
fermented (a+b fraction). Evaluation of Metabolizable Energy (ME) was done using gas
production at 48 hours after fermentation (Blummel and Orskov, 1989). The data obtained
were statistically analyzed using Oneway analysis of variance (ANOVA), and continued with
Duncan's new Multiple Range Test (Astuti, 1980).
RESULTS AND DISCUSSION

Gas production measurement

Gas production of the easily degraded fraction, or parameter a, of forages samples with PEG treatment always higher than that of forages sample without PEG treatment. This suggests that tannin reduce the process of microbial degradation. In vitro study using fermentation gas production method can be done to qualitatively indicate the phenolic compound in forage samples. However, this method cannot be used to quantitatively measure the level of phenolic compound in the samples. Results showed that in all forages samples in this study (Table 2), on samples with both PEG (+) addition and without PEG (-) addition, the longer batch incubation time, the more gas production. At the end of the incubation time (h 72), gas production in all samples were not higher than 60 ml/200 mg BK. This result suggests that organic matter degradation in forages samples was not quite high, as shown by the gas production. PEG treatment influence organic matter degradation of forages samples. The increase in gas production was detected in all batches incubation time and all samples that measured (Table 2). This result were in accordance with Gameda and Hassen (2015) study that showed PEG and PVP treatments were beneficial in forages samples that contain tannin. Enhancement of gas production appeared low in white Turi and quite high (40%) in Canary (Table 2), and consistent in all batches incubation times. Kondo et al. (2014) reported beneficial effects of PEG treatments. The use of PEG in the forages samples increased gas production 1.7% in silage green tea by product dan 11.7% in silage black tea by product. From the increase of gas production, the effect on N-NH₃ production was also evaluated. N-NH₃ concentration were 43.3% in Green tea and 56.7% in black tea.

Total gas production of degraded fraction (ml/200 mg)

Evaluation of feed quality using estimation in gas production of total degraded fraction (a+b fraction) have shown that addition of PEG in all forages samples increased gas production (P<0.05). The increased in gas production in Leguminocae leaves samples (Calliandra, Leucaena, and Canary) were higher than that of other leaves samples. Different results were showed in Bamboo leaves and red flower Turi stem skin. The increased of gas production was very low in both samples. This might showed the tannin bond by PEG in Calliandra, Leucaena, and Canary. The increase in gas production after PEG addition indicated that activities tannin can be reduced by eneration of tannin-PEG bond, hence tannin-protein bond and tannin–carbohydrate bond (especially fibre) can be broke down and ruminal microbes are able to degrade this component. Other possibility showed that the microbial activities was not disturbed by the presence of tannins and microbes in the rumen work more effective in degrading nutrients. However, it has been reported that after species of ruminal bacteria, namely streptococcus caprinus (predominant in Goats), selenomonas ruminantium, prevotella ruminicola, Butyrivibrio sp, Lacto bacillus sp and Enterobacteriaceae sp, can utilize both condensed and hydrolysable tannin as a sole source of energy (Pell et al 2001). After Brooker et al (1994) streptococcus caprinus bacteria found in the goat rumen had the ability to tolerate up to 3% of hydrolysable or condensed tannins.

The observations of the gas production from degraded fraction (a+b fraction), as well as phenolic component (total phenol, total tannins, and condensed tannins) it can be generated that there was no correlation between the height of phenolic components and the value of gas production. The increased of gas production did not have any correlation with the tannin or phenolic component content. The highest total phenol and tannin were found on the leaves of ketapang (Terminalia catappa L.) and the highest as well as white flower Sesbania grandiflora. However, the lowest gas production (a+b) was found on Canary (Canarium indicum L.) and on the white Turi (Sesbania grandiflora), and therefore there was
no consistency. Results in this study were in accordance with the results of Jayanegara and Sofyan (2008). Correlations between tannin in the forages (total phenol, total tannins, and CT) and gas production were not always linear. It might be attributed with the complex tannins structure, as well as genetic variation between forages. Barman and Ray (2008) showed that during the first 24 h of incubation there was a gradual reduction in gas production due of the increasing of tannin level (0% of tannin, gas production/24 h= 55.7±2.09 ml; 4% of tannin, gas production/24 h= 53.50±2.29 ml. 8% of tannin, gas production/24 h= 48.17±0.60 and 12% of tannin, gas production/24 h= 42.50±3.50 ml). This observation were in agreement with findings of Kamalak et al (2004) that the higher total condensed tannin (TCT) content will result in lower total gas production, this is observed in the leaves of Juniperus communis and carpinus betilus, respectively showing the total gas production of 59.59 and 60.13 and the TCT content of 20.34 % And 19.78%.
<table>
<thead>
<tr>
<th>Forage species and part used</th>
<th>Hours of incubation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>PEG (-)</td>
</tr>
<tr>
<td>Sesbania grandiflora, white flower, leaves</td>
<td>9.1</td>
</tr>
<tr>
<td>Sesbania grandiflora, white flower, stems skin</td>
<td>6.3</td>
</tr>
<tr>
<td>Swietenia mahagoni, leaves</td>
<td>8.3</td>
</tr>
<tr>
<td>Calliandra calothyrsus, leaves</td>
<td>10.1</td>
</tr>
<tr>
<td>Bambusa arundinacea, leaves</td>
<td>4.7</td>
</tr>
<tr>
<td>Cassia gum disticho L., leaves</td>
<td>6.0</td>
</tr>
<tr>
<td>Camellia sinensis, leaves</td>
<td>8.8</td>
</tr>
<tr>
<td>Terminalia catappa L., leaves</td>
<td>6.0</td>
</tr>
<tr>
<td>Leucaena leucocephala, leaves</td>
<td>8.1</td>
</tr>
<tr>
<td>Duranta repens, leaves</td>
<td>5.7</td>
</tr>
<tr>
<td>Sesbania grandiflora red flower, leaves</td>
<td>10.2</td>
</tr>
<tr>
<td>Sesbania grandiflora red flower, stems skin</td>
<td>8.6</td>
</tr>
</tbody>
</table>
Table 3. Gas production of a and b fractions (ml/200 mg)

<table>
<thead>
<tr>
<th>No</th>
<th>Forage species and part used</th>
<th>a fraction</th>
<th>b fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Non PEG PEG</td>
<td>Delta</td>
</tr>
<tr>
<td>1</td>
<td>Sesbania grandiflora, white flower, leaves</td>
<td>2.51</td>
<td>3.58</td>
</tr>
<tr>
<td>2</td>
<td>Sesbania grandiflora, white flower, stems skin</td>
<td>-0.45</td>
<td>1.35</td>
</tr>
<tr>
<td>3</td>
<td>Swietenia mahagony, leaves</td>
<td>3.85</td>
<td>4.81</td>
</tr>
<tr>
<td>4</td>
<td>Calliandra calothyrsus, leaves</td>
<td>7.82</td>
<td>8.38</td>
</tr>
<tr>
<td>5</td>
<td>Bambusa arundinacea, leaves</td>
<td>2.25</td>
<td>3.04</td>
</tr>
<tr>
<td>6</td>
<td>Canarium indicum L., leaves</td>
<td>4.20</td>
<td>5.19</td>
</tr>
<tr>
<td>7</td>
<td>Camellia sinensis, leaves</td>
<td>4.34</td>
<td>5.85</td>
</tr>
<tr>
<td>8</td>
<td>Terminalia catappa L., leaves</td>
<td>4.00</td>
<td>4.71</td>
</tr>
<tr>
<td>9</td>
<td>Leucaena leucocephala, leaves</td>
<td>5.02</td>
<td>6.28</td>
</tr>
<tr>
<td>10</td>
<td>Duranta rapens, leaves</td>
<td>0.31</td>
<td>0.67</td>
</tr>
<tr>
<td>11</td>
<td>Sesbania grandiflora red flower, leaves</td>
<td>1.99</td>
<td>3.98</td>
</tr>
<tr>
<td>12</td>
<td>Sesbania grandiflora red flower, stems skin</td>
<td>2.81</td>
<td>3.58</td>
</tr>
</tbody>
</table>

^{abcd} Different superscripts in the same column indicates significantly difference (P<0.05)

Table 4. Gas production of a+b fraction (ml/200 mg)

<table>
<thead>
<tr>
<th>No</th>
<th>Forage species and part used</th>
<th>Non PEG</th>
<th>PEG</th>
<th>Delta</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Sesbania grandiflora, white flower, leaves</td>
<td>56.21</td>
<td>59.04</td>
<td>2.82±0.39<sup>ab</sup></td>
</tr>
<tr>
<td>2</td>
<td>Sesbania grandiflora, white flower, stems skin</td>
<td>46.77</td>
<td>50.13</td>
<td>3.35±0.56<sup>ab</sup></td>
</tr>
<tr>
<td>3</td>
<td>Swietenia mahagony, leaves</td>
<td>46.79</td>
<td>53.33</td>
<td>6.54±2.52<sup>ab</sup></td>
</tr>
<tr>
<td>4</td>
<td>Calliandra calothyrsus, leaves</td>
<td>45.76</td>
<td>58.29</td>
<td>12.53±0.96<sup>c</sup></td>
</tr>
<tr>
<td>5</td>
<td>Bambusa arundinacea, leaves</td>
<td>32.41</td>
<td>33.94</td>
<td>1.52±0.20</td>
</tr>
<tr>
<td>6</td>
<td>Canarium indicum L., leaves</td>
<td>32.63</td>
<td>43.31</td>
<td>10.68±3.48<sup>c</sup></td>
</tr>
<tr>
<td>7</td>
<td>Camellia sinensis, leaves</td>
<td>51.64</td>
<td>58.44</td>
<td>6.79±0.66<sup>d</sup></td>
</tr>
<tr>
<td>8</td>
<td>Terminalia catappa L., leaves</td>
<td>36.82</td>
<td>42.94</td>
<td>6.12±0.37<sup>cd</sup></td>
</tr>
<tr>
<td>9</td>
<td>Leucaena leucocephala, leaves</td>
<td>37.22</td>
<td>49.21</td>
<td>11.99±1.49<sup>e</sup></td>
</tr>
<tr>
<td>10</td>
<td>Duranta rapens, leaves</td>
<td>50.25</td>
<td>54.46</td>
<td>4.21±0.52<sup>bc</sup></td>
</tr>
<tr>
<td>11</td>
<td>Sesbania grandiflora red flower, leaves</td>
<td>53.86</td>
<td>56.86</td>
<td>2.97±0.22<sup>ab</sup></td>
</tr>
<tr>
<td>12</td>
<td>Sesbania grandiflora red flower, stems skin</td>
<td>46.91</td>
<td>48.57</td>
<td>1.66±0.33<sup>a</sup></td>
</tr>
</tbody>
</table>

^{abcd} Different superscripts on the same column indicates significantly difference (P<0.05)

CONCLUSION

Poly Ethylene Glycos (PEG) was useful to reduce tannins or CT activities as shown in the height of gas production in PEG treatment. The concentration of total phenol, tannins, and CT contents do not always correlated with the gas production.
REFERENCES

ORAL PRESENTER

FAAIR AZMIUKTI

This is to certify that

CERTIFICATE