INTERNATIONAL SEMINAR ON TROPICAL ANIMAL PRODUCTION

“COMMUNITY EMPOWERMENT AND TROPICAL ANIMAL INDUSTRY”

PROCEEDINGS

Part 1

YOGYAKARTA, OCTOBER 19-22, 2010

Published by
Faculty of Animal Science, Universitas Gadjah Mada
2010
Community Empowerment and Tropical Animal Industry

This publication is issued as the Proceedings of the Fifth International Seminar on Tropical Animal Production held in Yogyakarta, Indonesia October 19-22, 2010.

Published by:
Faculty of Animal Science
Universitas Gadjah Mada
Jl. Fauna 3, Bulaksumur
Yogyakarta, Indonesia 55281
www.fapet.ugm.ac.id

ISBN: 978-979-1215-21-3

© Faculty of Animal Science, Universitas Gadjah Mada
No part of this publication may be reproduced or transmitted in any forms or by any means, electronic or mechanical, now known or heretofore invented, without permission in writing form the publisher.
LIST OF CONTENTS

PREFACE .. iii
REPORT FROM ORGANIZING COMMITTEE ... iv
WELCOME ADDRESS ... v
OPENING REMARKS .. vi
LIST OF CONTENTS .. vii

PART I

PLENARY SESSION

1. Asian livestock: Opportunities, challenges and the response
 Vinoj Ahuja .. 1 – 5

2. Cattle extension programs and research for tropical agriculture
 Dale R. ZoBell ... 6 – 10

3. The revolving fund system in sustainable community development
 Grant Davidson, and E.R. Ørskov .. 11 – 18

4. Intensification of smallholder livestock production: Is it sustainable?
 Hendrik M.J. Udo and Fokje Steenstra ... 19 – 26

5. The development of Danish agriculture and agribusiness: Lessons to be learned in a global perspective
 Henning Otte Hansen and Mogens Lund ... 27 – 35

6. Genome research of gut bacteria, how to analyze and how to apply?
 Tohru Suzuki, Kouta Sakaguchi, and Kazuma Yasui 36 – 40

7. Animal production in Thailand: Challenges and potentials in global market
 Yanin Opatpatanakit .. 41 – 49

8. Improvement of forage quality by means of molecular breeding in tropical grasses
 Takahiro Gondo, Genki Ishigaki, Yasuyo Himuro, Nafield Umami and Ryo Akashi 50 – 56

9. Advance research in function and healthy food from animal products – antihypertensive peptides derived from meat protein hydrolysates
 Michio Muguruma, Jamhari, Yuny Erwanto, and Satoshi Kawahara 57 – 63

SUPPORTING PAPERS

Animal Feed and Nutrition

1. Exploration of pathogenic and non-Pathogenic Fungi on Alfalfa (Medicago sativa L)
 Turrini Yudiarti, Sumarsono, and Didik Wisnu Widjajanto 64 - 67

2. Organic fertilizer application on performance and production of king grass in acid soil
 Sumarsono, Syafiful Anwar, Didik Wisnu Widjajanto, and Susilo Budiyanto 68 - 71
3. The effect of using earthworm (Lumbricus rubellus) meal additives as growth promoters on protein digestibility and performance of intestinal villi
 Hardi Julendra, Zuprizal, and Supadmo .. 72 – 78
4. Fermentation of Jatropha kernel cake (Jatropha curcas L.) using varieties of fungi on its chemical compositions, concentration of phorbolester, and digestibility
 Fatmawati, Hari Hartadi, and R. Djoko Soetrisno ... 79 – 88
5. Effect of protected crude palm oil on rumen microbial activities and methane production
 Nafly C. Tiven, Lies Mira Yusati, Rusman, and Umar Santoso 89 – 94
6. Fermentation parameters and total gas production of some rumen protected fat-protein
 Lilis Hartati, Ali Agus, Budi Prasetyo Widyobroto, Lies Mira Yusati 95 - 98
7. Dietary energy utilization of Local Sheep fed complete feed consisting of agricultural and agroindustrial by-products
8. Reduction of phytic acid and aflatoxin content of rice bran through fermentation rhizopus spp. Combined with deproteinated-chitin waste addition
 Ahmad Sofyan, Ema Damayanti and Hardi Julendra .. 104 – 108
9. Implementation of fermented rice bran as flavor enhancer additive and its effect on feed utilization and cattle performance
 L. Istiqomah, A. Febrisiantosa, A. Sofyan, and E. Damayanti 109 – 114
10. The use of kume grass (sorghum plumosum var. Timorense) bioconverted with white-rot fungi (pleurotus ostreatus) fed on Local Goat in East Nusa Tenggara
11. The use of local-fodder based supplement and agricultural by-product for cattle
 118 – 120
12. The use of kume grass (sorghum plumosum var. Timorense) to substitute king grass
 (peranisetum purpurephoides) fed on Bali Cattle in East Nusa Tenggara
13. The use of zeolite in low protein diet added with critical amino acids to reduce pollution
 Candra Elia Puspasari, Wihanadoyo, and Supadmo ... 124 – 148
14. Effects of substitution of Elephant grass by corn waste and coffee pulp as basal diet on nutrient intake and digestibility in young male Onjole crossbred cattle Dicky Pamungkas, Ristianto Utomo, Nono Ngadiyono, and Muhammad Winugroho 129 – 134
15. Effect of lactic acid bacteria inoculants applications to the quality and chemical composition silage waste of carrot plant (Daucus carota)
 Badat Muwakhid .. 135 – 140
16. The content of phytoestrogen on legume plants
 Batseba M.W. Tiro, Suwijiyo Pramono, Hari Hartadi, Djoko Soetrisno, and Endang Baliarti .. 141 - 145
17. Chemical composition and digestibility(in vitro) of cocoa pod husk (theobroma cocoa l.) Fermented withaspergillus niger
 F.F. Munier, H. Hartadi, and I.G.S. Budisatria ... 146 – 154
18. Intake and digestibility of feed in lamb of Sumatera composite breed when the commercial concentrate diet were substituted by gliricidia dan rice bran

Dwi Yulistiani and Wisri Puastuti ... 155 - 158

19. Fermentative gas production of different feeds collected during wet and dry seasons when incubated with rumen fluid from Rusa Timor (Cervus timorensis)

M. S. Arifuddin, R. Utomo, H. Hartadi, and Damry .. 159 - 164

20. Effect of feed complete feed plus on quality and milk production of dairy cow

Ristianto Utomo, B.P. Widyobroto, L.M. Yusiati, R.A. Rihastuti, S.P.S. Budhi, and V.K. Dewi ... 165 - 170

21. In Vitro gas production of fermented cacao pod (Theobroma Cacao) added with cellulolytic inoculum from cattle rumen fluid

Chusnul Hanim, L.M. Yusiati, and V.P. Budyastuti .. 171 - 176

22. Hibiscus Schizopetalus as saponin source, reduce protozoa number and increase microbial protein synthesis on in vitro sheep rumen fermentation

Asih Kurniawati and Nafiutul Umami .. 177 - 182

23. The effect of gliricidia or mixture of rice bran and copra meal supplementation on feed intake, digestibility and live weight gain of early weaned Bali Calves fed A, Mulato grass

Marsetyo, Muhammad Ilyas Mumu, and Yohan Rusiyantono 183 - 188

24. A comparison of feeding management practices of beef cattle smallholders in lowland and upland sites in East Java

25. The effect of ketepeng cina leaf (cassia alata) I, as a source of anthraquinone, methanogenes is inhibitor agent on rumen microbial protein synthesis for beef cattle in Sedyo Rukun farmer group

Lies Mira Yusiati, Zenaal Bachrudin, Chusnul Hanim, and Lila Indriana 196 - 200

26. The effects of feed restriction severity on compensatory growth of goat kids in Bushehr Province, Iran

Mahmoud Dashtizadeh, Azizollah Kamalzadeh, Mohammad Hadi Sadeghi, Amir Arsalan Kamali, and Abdolmehdi Kabirifard .. 201 - 207

27. Fermentation quality of king grass (Pennisetum Purpureophoides) ensiled with epiphytic lactic acid bacteria and tannin of acacia

B. Santoso, B. Tj. Hariadi, H. Manik and H. Abubakar 208 - 214

28. The effect of methionine on glutathion production to eliminate aflatoxin B1 toxicity

Yunianta, Ali Agus, Nuryono, and Zupriwal .. 215 - 220

29. Rice bran fermentation tecnology and soya bean oil suplementation of transfer protection fatty acid omega-3 of unsaturated fatty acids conten of milk dairy cow

Sudibya .. 221 - 226

30. Growth performance and blood profile of african cat fish fed sweet potato (ipomoea batatas) leaf meal

Olaniyi Christianah Oludayo ... 227 - 232

31. Application of complete feed formulated from agriculture by-products with undergraded protein supplementation on beef cattle productivity

Bambang Suhartanto, B.P. Widyobroto, I.G.S. Budisatria, Kustantinah, and R. Utomo ... 233- 238
32. The effect of green tea extract (camellia sinensis) supplementation on blood profiles and lipid oxidation in broilers fed high pufa diet
 Isti Astuti, Supadmo, Sugeng Riyanto, Supriyadi
 239 - 242

33. The role of lactic acid bacteria on silage duration process and rumen content silage quality
 Isnandar, R. Utomo, S. Chuzaimi, E. Sutariningsih, and L.M. Yusiati
 243 - 249

34. Replacing enzose by corn grains: impact on nutrients utilization and weight gain in growing buffalo calves
 M.Nisa, M.Aasif Shahzad, and M.Sarwar
 250 - 256

35. Nutrients utilization, nitrogen dynamics and weight gain in growing buffalo calves fed graded replacement of urea by corn steep liquor
 M.Aasif Shahzad, M.Nisa, and M.Sarwar
 257 - 261

36. Production and nutritive value of mulberry hay as potential feed supplement for ruminants
 Z.A. Jelan and A.R. Alimon
 262 - 265

37. The retention of copper in sheep fed palm kernel cake supplemented with molybdenum, molybdenum plus sulphur and zinc
 A.R. Alimon, R.A. Al-kirshi and Z.A. Jelan
 266 - 268

38. Utilization of complete feed based on fermented rice straw for australian commercial cross steer on carcass and meat quality
 Bambang Suwignyo, Ristianto Utomo, Yuny Erwanto and Ali Agus
 269 - 273

39. The measurement of rate of passage using different pairs of alkane as markers for sheep fed hay or fresh grass
 A. Kustantinah, R.W. Mayes, and E.R. Orskov
 274 - 281

40. Aflatoxin m1 excretion in the milk of tropical dairy cow fed contaminated aflatoxin b1 in the diet
 Ali Agus, I. Khuluq, I. Sumantri, C.t. Noviandi, and Nuryono
 282 - 285

Poultry Production

1. The interaction of dietary lysine and temperature on egg laying performance of broiler breeders
 Abdulameer Al-Saffar
 286 - 290

2. Digestible methionine requirement for performance and carcass yield of broiler finisher
 N.G.A. Mulyantini
 291 - 295

3. Resource use efficiency in poultry production in Bureti District, Kenya
 Ngeno Vincent, B. K. Lagat, M.K. Korir, E.K. Ngeno, M.J Kipsat
 296 - 302

4. In vitro evaluation of phytogenic potential of seed from mango (Mangifera indica), moringa (Moringa oleifera) and sweet apple (Annona squamosa) for poultry
 Rusdi, Asriani Hasanuddin, Rosmiaty Arief
 303 - 307

5. The effect of adding vitamine C and E In native chicken semen extender stored at temperature 4 °c on semen quality and egg fertility
 Widya Asmarawati, Ismaya, and Tri Yuwanta
 308 - 313
6. The effects of single lactic acid bacteria probiotic supplementation on intestinal mucosa profile and immune response in broilers
Bambang Ariyadi and Sri Harimurti ... 314 – 319

7. Identification of single nucleotide polymorphism of gen insulin-like growth factor binding protein 2 on growth of native chicken
Sri Sudaryati, Jafendi HP Sidalog, Wihandoyo, and Wayan Tunas Artama 320 - 324

8. Cassava leaf meal inclusion in palm kernel meal diet could improve egg yolk color in post-molted native laying hens
Adrizal, S. Fakhri, R. Murni, Yatno, T. Maranata, S. Asby, Yusrizal, and C. R. Angel ... 325 – 331

9. Egg production responses of laying hens to feed medicinal herbs after peak of production

10. Systems of poultry husbandry
C.A. Bailey, S.Y.F.G. Dillak, S. Sembiring and Y.L. Henuk .. 335 – 341

11. Ovulation and oviposition patterns in quail (Cortunix Cortunix Japonica)
S.Y.F.G. Dillak, A. Pigawahi, and Y.L. Henuk ... 342 – 345

12. Evaluation of tofu waste treated with fermentation and enzyme supplementation in broiler chickens
B. Sundu, Baharuddin and M. Basri .. 346 – 349

13. Influence of grit on performance of local chicken under intensive management system
Jublin Franzina Bale-Therik, Cyske Sabuna .. 350 - 353

14. The growth and productivity of selected kampung chicken
Heti Resnowati and Tike Sartika .. 354 – 357

15. Effect of divergent selection body weight to egg production during the six generation and GHI gene polymorphism quail (Coturnix coturnix japonica)
Ning Setiati, J.H.P. Sidadolog, T. Hartatik and T. Yuwanta 358 – 363

16. Feeding management evaluation of duck farmer group in Brebes
Heru Sasongko ... 364 – 367

17. Heterosis and combining ability for body weight and feed conversion in four genetic groups of native chicken
Franky M.S. Telupere ... 368 – 373

18. The implementation of forced molting technology on rejected laying hens for the people discharged from employment (a case study at Duwet Village, Klaten, Indonesia)
Ali Mursyid Wahyu Mulyono, Sri Hartati, Ahimsa Kandi Sariri, and Engkus Ainul Yakin .. 374 – 379

19. Growth performance of Maleo birds (Macrocephalon maleo) by Means of feeding control in the captivity
Hafah, Tri Yuwanta, and Kustono .. 380 - 384

20. Egg production and quality of Kedu chicken based on plumage color that reared intensively
Ismoyowati, Dadang Mulyadi Saleh, Rosidi .. 385 – 390

21. Effect of indigenous lactic acid bacteria probiotics on broiler performance
Sri Harimurti, Nasroedin, Endang Sutriswati Rahayu, Kurniasih 391 - 394
22. Effects of zinc supplementation on laying performance of hens
O.M.O. Idowu ... 395 – 397

23. Effect of different level of rice polishing in combination with phytase and acidifier on performance and shell quality in layer chickens
Bayu Sesarahardian, Osfar Sjofjan and Eko Widodo .. 398 - 402

PART II

Livestock Production

1. Exterior characteristics of Kejobong goats kept by farmers

2. The effect of goat-sharing system on the performance of farmer groups raising etawah cross bred goats – a case study in ‘Sukorejo’, Girikerto, Turi, Sleman
Yuni Suranindyah, Kustantinah, and E. R. Orskov .. 411 – 414

3. Growth and carcass production of Ongole grade cattle and Simmental Ongole crossbred cattle growing in a feedlot system
Mateus da Cruz de Carvalho, Nono Ngadiyono, and Soeparno .. 415 - 422

4. Available herbage sustainability under soil and water conservation for development of small ruminants
Sutarno, Sumarsono, Widiyati Slamet, Didik Wisnu Widjajanto 423 – 426

5. A study on some aspects of equine husbandry in the Punjab-Pakistan
Arshad Iqbal, Asif Hameed, M. Younas, Bakht B. Khan and S. A. Bhatti 427 – 432

6. Feeding strategies to increase growth of early weaned Bali calves in East Java

7. Response of brahman crossbred cows and their calves kept under semi-intensive and fed them on local-fodder supplement in east Sumba Regency, East Nusa Tenggara Province

8. The relationship between heart-chest girth, body length and shoulder height, and liveweight in Indonesian goats
Asmuddin Natsir, Mawardi A. Asja, Nasrullah, Yusmasari, A. Nurbayu, Peter Murray, and Roy Murray-Prior .. 441 – 445

9. Growth performance of Ongole grade (Peranakan Ongole) cattle in Indonesia
Budi Haryanto and Dicky Pamungkas ... 446 - 451

10. Growth of carcass and carcass component of different slaughter weight of local ram
A.E. Manu, M.M. Kleden, S.A. Adjam, J.J.A. Ratuwaloe and Y.L. Henuk 452 – 454

11. Postpartum productivity of Simmental-Ongole crossed cows of the first generation compared to Ongole crossed cows kept by farmers
E.Baliarti, W.T.H.M. Christoffor, and Soenardi ... 455 - 459
12. The effect of supplementation of different lysine sources on the performance of weaned pigs from 4 up to 10 weeks of age
Risel Diana H. Likadja .. 460 - 463

13. Effect of fiber source on the performance of weaned pigs from 4 up to 10 weeks of age
Johanis Ly and Risel D.H. Likadja .. 464 - 467

14. Influence the improvement of cattle feedlot production system to increase the welfare of feedlot farmers group in Indonesia through the implementation of integrated sustainability farming system
Joko Riyanto, Susi Dwi Widyawati, and Wara Pratiti 468 - 473

15. Breeding Bos sondaicus d’Alton cattle in eastern Indonesia: cattle growth
Totok B. Julianto, Tanda Panjaitan, Geoffry Fordyce, and Dennis Poppi .. 474 - 477

16. Breeding Bos javanicus d’Alton cattle in eastern Indonesia cattle control, diets, draught use and feeding
Tanda Panjaitan, Geoffry Fordyce, Dennis Poppi 478 - 482

17. Breeding Bos javanicus d’Alton cattle in eastern Indonesia: Monitoring village cattle
Dennis Poppi, Tanda Panjaitan, Dahlanuddin, and Geoffry Fordyce .. 483 - 487

18. Application of non linear models in estimating growth curves of body weight and sizes of Holstein-Friesian female cattle
Nia Kurniawan, and Anneke Anggraeni .. 488 - 496

20. Diversity on the exterior performance of crossbred cattle kept by farmers in central java

21. Alternative control for endoparasites infection in goats by feeding fresh matured and immature leaves of terminalia catappa
Mohd Azrul Lokman, and Mohd Effendy Abd. Wahid 509 - 514

22. Growth of nine month old male buffalo calves as affected by different crude protein and energy concentrations
M. Sarwar, M. A. Shahzad, N.A. Tauqir, and M. Nisa .. 515 - 520

23. Performance of lactating buffaloes as affected by varying concentrations of essential amino acids
N.A. Tauqire, M.A. Shahzad, M.Nisa, M.Sarwar, H.A. Saddiqi, M. Fayyaz, and M.A Tipu .. 521 - 526

Animal Physiology, Reproduction, and Genetics

1. Seasonal investigation of serum magnesium concentration in native cattle at Western Azerbaijan Province, Iran
M.R. Valilou and A.R. Rotfi .. 527 - 530

2. Detection of Toxoplasma gondii based on sequence r529 and sag1 gene probe
Asmarani Kusumawati, Harto Widodo, Nafratilova Septiana, and Sri Hartati .. 531 - 534

3. Reproductive performance of dairy cows in Yogyakarta Province based on balanced ration given
Ahmad Pramono, Kustono, and hari Hartadi .. 535 - 540
4. Breeding programme development of Bali cattle at P3Bali
 Andoyo Supriyantono, Luqman hakim, Suyadi, and Ismundiono
 541 - 546

5. Friesian holstein imported cows: physiological character and blood composition based
 on altitude difference
 Ratna Dewi Mundingsari, Adiarto, and Soenarjo Keman
 547 – 551

6. Breeding value of Friesian Holstein bulls in PT. Naksara Kejora Rowoseneng,
 Temanggung, Central Java
 Hasyim Mulyadi, Indrawati Mei P., and RR. Mahardika N.P.
 552 – 555

7. Genetic potency of weaning weight of boerawa F1, backcross 1, and backcross 2 does
 at breeding centre, Tanggamus Regency, Lampung Province
 Sulastri
 556 – 560

8. Distribution of population and production estimate of some cattle breeds at Yogyakarta
 Province, Indonesia
 Sumadi, Tety Hartatik, and Sulastri
 561 – 564

9. In vitro fresh sperm preparation for maintaining sperm viability at storage temperature
 of 14°C using tannin supplementation of lamtoro leaves
 Mirajuddin, Kustono, Ismaya, and A. Budiyanoto
 565 – 571

10. Phenotype and phylogenetic studies of local cattle in pacitan district, East Java,
 Indonesia
 Muhammad Cahyadi, and Tety Hartatik
 572 – 577

11. The exploration of genetic characteristics on Madura cattle
 T. Hartatik, T. S. M. Widi, Ismaya, D.T. Widayati and E. Bialiart
 578 – 584

12. Breeding Bos javanicus d’Alton cattle in Eastern Indonesia: Cattle reproduction
 Geoffry Fordyce, Tanda Panjaitan, Totok B. Juliarto, Eliza Kurtz, and Dennis
 Poppi
 585 - 589

13. Improvement quality of Bligon goat sperm through separation by albumen
 Sigit Bintara, Soenarjo Keman, Sumadi, and Ali Agus
 590 – 594

14. Correlation between plasma progesterone concentrations and fecal Progestins during the
 estrus cycle of Kedah Kelantan cows
 N. Yimer, Y. Rosnina, H. Wahid, A. A. Saharee, K. C. Yap, P. Ganesamurthil, M.
 Fahmi, M.M. Bukar
 595 – 598

15. Effect of PGF2α, or CIDR on ovarian follicular development during estrous cycle in
 goats
 Muhammad Modu Bukar, Rosnina Yusoff, Abd Wahid Haron, Gurmeet Kaur
 Dhaliwal, Mohammed Ariff Omar, Nur Husien Yimer, Mohd Azam Khan
 Gorim Khan
 599 – 602

16. The use of frozen semen of Holstein-Friesian bulls with the BB genotype of the kappa
 casein gene in Indonesia
 A. Anggraeni, C. Sumantri, and E. Andreas
 603 – 608

17. Effect of haylage made of kume grass standinghay fermented with liquid palm sugar
 and local chicken manure on semen quality and scrotum circumference of male local
 goat
 Henderiana L.L. Belli and Nathan G.F. Katipan
 609 – 613

18. The early identification of twinning trait genes on Indonesian local beef cattle
 Aryogi, Endang Baliarti, Sumadi, and Kustono
 614 - 622
19. Effect of bulls on pregnancy rate of estrous synchronized Brangus cows
A. Malik, H. Wahid, Y. Rosnia, A. Kasim, and M. Sabri 623 – 626

20. Analysis of Butyrophilin gene polymorphism in buffalo population in Khouzestan Province by PCR-RFLP Technique

Technology of Animal Products

1. The development of ripened cheese containing lactic acid bacteria: the effect on chemical composition, acid production and sensory value
Tridjoko Wisnu Murti .. 631 – 637

2. The restructured of local beef of low quality with different binders, fat emulsifiers and fortification with vitamin a in beef burger
Setiyono and Soeparono .. 638 – 643

3. The using of extract rabbits stomachs in the making goat milk cheese ripened with Lactobacillus Acidophilus
Inda Dewata Sari, Nurliyani and Indratiningsih ... 644 – 648

4. Effect of broiler age and extraction temperature on characteristic chicken feet skin gelatin
Muhammad Taufik, Suharjono Triatmojo, Yuny Erwanto, Umar Santosono 649 – 656

5. Quality changes of burger from vegetable, wheat flour, rice flour with fat emulsion during frozen storage

6. Polymerization of meat and Tempeh protein using transglutaminase and their potency as an antihypertency and antioxidant agent
Yuny Erwanto, Jamhari dan Rusman .. 663 – 670

7. The application of local dahlia tuber (Dahlia pinnata L.) as prebiotics for improving viability of probiotics Bifidobacterium bifidum in yoghurt
Wisodo, Nosa Septiana Anindita, Endang Wahyuni, and Indratiningsih 671 – 676

Extension, Community Development and Agribusiness

1. Elephant Camps and their impacts to community: Case study in Keud Chang, Chiang Mai Province, Thailand
Weerapon Thongma and Budi Guntoro ... 677 – 682

2. Soft technology innovation for farmer empowerment to bring about practice change in an agricultural r&d project: lesson learnt from Eastern Indonesia
Nurul Hilmiati, Elske van de Fliert, Medo Kote, Debora Kana Hau, Toni Basuki 683 – 690

3. The effects of dairy cattle ownership and farmers’ demography factors on the evacuation moving farmers’ behavior at Merapi volcano area (case study at Kaliadem Sub Village, Yogyakarta, Indonesia)
Siti Andarwati and F. Trisakti Haryadi ... 691 – 694
4. Farmers’ profile and exterior characteristic of female Moa Buffaloes in Moa Island, Maluku Province
 Justhinus Pipiana, Endang Baliarti, and I Gede Suparta Budisatria .. 695 – 701

5. Economic analysis of on-farm feeding strategies to increase post-weaning live weight gain of Bali calves
 Atien Priyanti, Simon Quigley, Marsetyo, Dicky Pamungkas, Dahanuddin, Esnawan Budisantoso, and Dennis Poppi ... 702 – 708

6. The role of livestock service in order to cattle agribusiness development in regency of Kupang
 Maurinus Wilhelmus Gili Tibo .. 709 – 716

7. Factors with the purchase of meat by consumers in Makassar, Sulawesi
 Nasrullah, Yusmasari, A. Nurhayu, Asmuddin Natsir, Mawardi A. Asja, Roy Murray-Prior, and Peter Murray ... 717 – 724

8. Goat supply from Enrekang, South Sulawesi to East Kalimantan: a long and winding road
 Mawardi A. Asja, Asmuddin Natsir, Roy Murray-Prior, Peter Murray, Nasrullah, Yusmasari, and A. Nurhayu .. 725 – 732

9. Goat meat consumption in Makassar, Sulawesi: Important for religious and cultural ceremonies, but many consider it a health risk
 Roy Murray-Prior, Asmuddin Natsir, Mawardi A. Asja, Nasrullah, Yusmasari, A. Nurhayu, and Peter Murray ... 733 – 740

10. Marketing practices of smallholder beef cattle producers in east java

11. Empowerment of goat farming: Lessons learnt from the development of goat farming group of Peranakan Etawah Gumelar Banyumas
 Akhmad Sodiq ... 747 – 752

12. Performance of credit program to small dairy cattle development in Indonesia
 Rini Widiati .. 753 – 758

13. Analysis of demand of broiler meat in Central Java
 Nurdayati, Sudi Nurtini, Masyhuri, and Rini Widiati .. 759 – 762

14. Decision making model analysis of technology adoption: empirical study on milk pasteurization retailer behavior
 Januar Tri Sukarna, Suci Paramitasari Syahlani, and Ahmadi .. 763 – 766

15. An education management model based on cognitive learning for small dairy farmers in the tropics
 Viriya Munprasert, Phahol Sakkatat, Varaporn Punyavadee, Siriporn Kiratikarnkul, and Dumrong Leenanuruksa ... 767 – 770

16. Participation of women farmers on beef cattle farming management in Pandan Mulyo Group, Bantul, Yogyakarta
 Ida Wulandari, Budi Guntoro, and Endang Sulastri .. 771 – 777

17. The sources of dairy cows and concentrate feed among the dairy farmers in Sleman Regency, Yogyakarta
 Endang Sulastri and Budi Guntoro .. 778 – 780
18. Information access among chicken and cattle farmers in Gunung Kidul Yogyakarta and Ngada East Nusa Tenggara
Budi Guntoro, Fathul Wahid, Ali Agus, and Stein Kristiansen 781 – 784

Reviews

1. The use of gewang tree (*corypha elata robx*) as feed for livestock in the tropics
 Maritje A. Hilakore, U Ginting-Monthe, and Y.L. Henuk 785 – 789

2. Optimizing nutrition of commercial livestock for minimal negative impact on the environment through precision feed formulation
 Y.L. Henuk, S.Y.F.G. Dillak, S. Sembiring and C.A. Bailey 790 – 794

3. Performance and prospect of beef cattle development in Central Java
 W. Roessali, Masyhuri, Sudi Nurtini, dan D.H. Darwanto 795 – 801

4. Livestock husbandry in India: a blessing for poor
 Nizamuddin Khan, Anisur Rehman, Md. Asif Iqubal and Mohd. Sadiq Salman 802 – 807

5. Brown midrib resistance (BMR) corn
 D. Soetrisno, M.H. Shane, C.M., Dschacb J.-S. Eun, and R.Z. Dale 808 - 814

INSTRUCTIONS TO AUTHORS
Editor-in-Chief

Krishna Agung Santosa
(Universitas Gadjah Mada, Indonesia)

Editorial Board

Ali Wibowo
(Budi Guntoro)
(Dale R. ZoBell)
(Egil Robert Ørskov)
(Endang Sulastrri)
(I Gede Suparta Budisatria)
(Mogens Lund)
(Ryo Akashi)
(Soeparno)
(Subur Priyono Sasmito Budhi)
(Tohru Suzuki)
(Widodo)
(Yanin Opatpatanakit)

(University of Copenhagen, Denmark)
(University of Miyazaki, Japan)
(Universitas Gadjah Mada, Indonesia)
(Gifu University, Japan)
(University of Miyazaki, Japan)

Editorial Staff

Dyah Woro Hastuti
Wirasto
Wisnu Widiarto
Exterior characteristics of Kejobong goats kept by farmers

I Gede Suparta Budisatria, Panjono, Ali Agus, Lies Mira Yusiati, and Sumadi

Faculty of Animal Science, University Gadjah Mada, Yogyakarta, Indonesia

ABSTRACT: Indonesia has various animals owning characteristic genetic properties and germ plasm. Kejobong goats is one of germ plasm owned by Indonesia, however their characteristic and productivity has not been explored, therefore, this research was conducted to identify farmers background and exterior characteristic of Kejobong goats kept by farmers at Kedarpan village, Kejobong, Banjarnegara. The materials were 45 Kejobong goats’ farmers and 185 head of male and female Kejobong goats at various ages, starting from one month old up to more than three years old. Structured questionnaire were used to interview farmers background. The data consisted of farmers’ background and exterior characteristics of Kejobong goats, it was heart girth, body length, shoulder height and ear length. The data was tabulated and analyzed using one way analysis of variance. Results indicated that Kejobong goats were kept by old farmers (48.3 years old) with low educational background (76.2% were basic school) and less involvement of family members on keeping goats (1.8 head per family). On average, the numbers of goats kept by farmers was 4.1 head (2-8 head) with the main objective was saving (85.7%) and goats were kept for breeding purposes (90.5%). The exterior characteristics of Kejobong goats indicated that young female goats (1 to 12 months old) have better characteristics than male goats, while adult (more than one year olds) male goats have better characteristics than female. Heart girth, body length, shoulder height and ear length of 1-3 months old of female goats were 43.2; 38.8; 42.2 and 17.8 cm, respectively, while for male goats were 43.2; 37.2; 41.8 and 16.8 cm. Exterior characteristics of female Kejobong goats under one year old were 68.6; 54.8; 62.7 and 18.5 cm for heart girth, body length, shoulder height and ear length, respectively, while for male goats were 68.3; 57.0; 62.0 and 19.5 cm. Heart girth, body length, shoulder height and ear length of 36 months old of female goats were 75.5; 61.0; 67.2 and 22.0 cm, while for male goats were 72.0; 61.5; 68.0 and 23.0 cm, respectively. It is concluded that Kejobong goats were kept by old farmers with low educational background, small numbers owned and traditional management. Young female Kejobong goats have better exterior characteristics than those of male, in contrast with the adult.

Key words: exterior characteristics, Kejobong goats, farmers

INTRODUCTION

Indonesia has an abundance and potential asset of animal genetic resources and germ plasm that can be used to develop new animal breeds. The potency and diversity of animal germ plasm in Indonesia is a superior asset which can be promoted and developed, it is also neccessary to explore and to develop through international cooperation/networking and research collaboration. Different varieties of local animal breeds which are locally specific, either well known local breed of animal or not, can be found in each province with unknown number of population and potency. Those breeds have comparative superiority over imported breeds, for example they are better adapted to the harsh tropical environment, good reproduction performances as a result of natural selection.

Goats are closely linked with the poorest people in rural areas and the number of goats they keep is generally small, kept under traditional ways and for multipurpose objectives, as live savings, sources of animal protein, utilization of spare land around farmers’ houses and manure resources to fertilize their crops (Budisatria, 2006), have socio-economic relevance and socio-culture roles (Devendra, 1992). The lack of attention given to small ruminants is the cause of the
stagnant development and consequently the annual population does not increase significantly. Goats are kept under traditional method and the majority of farmers keep goats as secondary activity, although some of them keep them for their main cash income.

One of goat breed that recently have been given attention is Kejobong goat. This type of goat originally kept by farmers in Purbalingga district, Central Java. The special characteristic of Kejobong goat is purely black in hair colour, hanging ears and semi concave face. The history of Kejobong goat is unclear, however, some researchers stated that Kejobong goats was produced from the crossing of local goats and Etawah Grade goats and selected for pure black colour, therefore Kejobong goats has uniform colour, namely black (Astuti et al., 2007; Budisatria et al., 2009).

The superiority of local animal germ plasms has not been explored, in one side, their conservation and utilization remains just on paper, on the one hand, threats of erosion and pollution of germ plasms occur on the other. This condition worries us because it may result in the extinction of some germ plasms (Astuti et al., 2007). Therefore, conservation, development and utilization of animal germ plasms must be supported by the rule and methods so that the potency of indigenous animal genes or local animals and their genetic relationship can be protected, either for the animal has been recently developed or still kept under sub-system.

As the initial step to support animal germ plasm conservation in Indonesia, therefore this research was conducted to explore the exterior characteristics of Kejobong goats kept by farmers at Kedarpan village, Kejobong, Central Java.

MATERIALS AND METHODS

The research was conducted for five months, starting from June to October 2009, located at Kedarpan village, Kejobong, Purbalingga, Central Java. In total, the research was involved 45 Kejobong goats farmers and 162 heads of male and female Kejobong goats at various ages, it consisted of 30 pre weaning goats (0-3 months old), 42 heads of post weaning goat (6 months old), 60 heads of 12-18 months old of male and female Kejobong and 30 head of goats under 24 – 36 months old. The equipment used were small scale with capacity 100 kg and 0.1 kg accuracy to weight goats, band type and livestock ruler to measure exterior characteristics of goats. Semi structured questionnaires were used to interview farmers on their background and goats practiced.

The parameters were consisted of farmers’ background and the exterior characteristics of Kejobong goats, including heart girth, body length, shoulder height and ear length. Survey and direct measurement were applied to collect all parameters required.

Heart girth was measured on the breast of goat at the 3-4 costae, behind the legs using band-weight tape, while body length measured on the body of goats from tuberculum lateralis humeralis up to tuberculum ischiadium using livestock ruler. Shoulder height was measured on the highest point of shoulder using livestock ruler. Ear length was measured using band tape at the longest ear. All measurement were conducted when the goats standing at parallelogram position.

The qualitative data were analyzed descriptively, it was consisted of farmers background, the numbers of goats, reason for keeping goats and its production systems, while exterior characteristics of Kejobong goats data was tabulated and analyzed using one way analysis of variance.
RESULT AND DISCUSSION

Physical Appearance of Kejobong Goats

Kejobong goats have massive body like Kacang goats do, so there is a guess of a possibility that the two breeds might be related to each other. There was also a guess that Kejobong goats was a breed resulted from cross mating between Kacang goats with goats from India such as Etawah or Benggala, then undertook natural selection from generation to generation until up to the existence of homogenous black color (Astuti et al., 2007). Based on the direct interview and discussion with the farmers, specific characteristic of Kejobong goats is close to Bligon goats, its body size were relatively small, its ears were almost looked like Bligons which were hanging with curved tips, males and females had varied horns of small sizes. Sodiq and Haryanto (2007) stated that these goats had medium size of body frame. The differences between Kejobong and Bligon goats was the colour, Kejobong goats were mostly black in colour, so that this breed was also called as Black Kejobong goats. Black hair color is highly dominant compared to the other colors of white, brown, and or its combination. Facial profile is mostly romannose which is concave similar to Etawah grade, with convex dorsal line, long body with strong legs and bowl like big breast. Black colour of Kejobong goats might be caused by natural selection as stated by Astuti et al. (2007) that underwent natural selection from generation to generation until up to the existence of homogenous black color. The fact that small vendors in this research area are prefer to slaughter black goats and the price is more expensive than non black goats also supported the development of Kejobong goats.

Background of the Farmers

Farmers’ background at Ngudidadi farmers’ group, Kedarpan village, Kecobong, based on interviews was presented in Table 1. The age of farmers were varied widely, ranging from 25 up to 75 years olds, the average was 48.3 years old. It was indicated that farmers were in productive condition, however, some farmers were unproductive anymore. In addition, goat were seem to be kept by older people. The age of farmers will significantly affect their mobility in keeping goats, the younger farmers will have high motivation and mobility compared to those older farmers, therefore it can be expected that young famers will kept their goats in a better condition so that productivity of goat will improved significantly. Young farmers usually have high motivation so they will rapidly adopt new innovation (Soekartawi (2005), this will improve management of goats keeping, whereas there is a tendency that older farmers (more than 50 years old) will not fully adopt new innovation (late adoption) and keeping goats is a kind of routinity, they do not have high motivation on adopting new innovation (Mardikanto, 1993).

The majority of respondents occupation were farmers, it was 57.14%, while others occupation were hired labour (33.33%) and business man (9.52%), indicating that most goats were kept for multipurposes goals. The result of interview showed that none of the respondent kept goats for main cash income, indicating that goats have not been feasible to be source of main income for the family, it was a secondary activity and act as saving or insurance value, which can be sold at anytime when the farmers need urgent cash, as stated by Budisatria (2006). It was supported by the fact that the main objective of keeping goats were saving (85.71%) and only a few farmers kept goats for profit oriented (14.29%) as presented in Table 2.

Farmers experiences in keeping goats were varied widely, the average was 12.43 years. The less experiences in keeping goats was 3 years, while the advance experiences was 45 years. This result indicated that farmers has long experiences in keeping goats. The experience on keeping goats will affect the way of goats being kept. The more experiences they have, more goats were kept and better management applied.
Educational background of farmers were relatively low. Majority of farmers educational background were only basic school (76.19%) and only a few farmers has higher education. In addition, there were 14.29% of farmers were in illiteracy conditions. This figure revealed that adoption of new technology on keeping goats could be serious problem. Soekartawi (2005) stated that farmers with low educational background will reluctant and find to be difficult to adopt new innovation.

Table 1. Characteristics of Kejobong goat farmers at Kedarpan village, Kejobong

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Range</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Numbers of farmers (person)</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>Farmers age (year)</td>
<td>25 - 75</td>
<td>48.33</td>
</tr>
<tr>
<td>Occupation (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Farmers</td>
<td>57.14</td>
<td></td>
</tr>
<tr>
<td>Hired labour</td>
<td>33.33</td>
<td></td>
</tr>
<tr>
<td>Businessman</td>
<td>9.52</td>
<td></td>
</tr>
<tr>
<td>Experiences in keeping goats (year)</td>
<td>3 - 45</td>
<td>12.43</td>
</tr>
<tr>
<td>Educational background (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Illiteracy</td>
<td>14.29</td>
<td></td>
</tr>
<tr>
<td>Basic school</td>
<td>76.19</td>
<td></td>
</tr>
<tr>
<td>Junior high school</td>
<td>4.76</td>
<td></td>
</tr>
<tr>
<td>Senior high school</td>
<td>4.76</td>
<td></td>
</tr>
<tr>
<td>Household size (person)</td>
<td>2 - 6</td>
<td>4.15</td>
</tr>
<tr>
<td>Household members involved in goat keeping (person)</td>
<td>1 - 3</td>
<td>1.75</td>
</tr>
</tbody>
</table>

Main characteristic of small farmers is involving household labour on goat management practised. The result indicated that household members involved in goat keeping was 1-1.75 person, the average was 1.75 person. Although the household size was relatively high, 2-6 person per household, involvement of household labour was relatively low. Father and mother were mostly involved in keeping goats, while the children did not have a specific job, their involvement depended on their time availability. Budisatria (2006) stated that fathers mostly involved in daily management of goats, feed collection and marketing, while cleaning the houses was the responsibility of the mother. Low involvement of children on keeping goats could be caused by the fact that farmers themselves did not acquire the children to be involved, they focused on their school, furthermore, the farmers themselves did not allow their children to be the farmers, because they have opinion that keeping goats can not be used as a main sources of family income, as stated by Budisatria (2000).

Reason for Keeping Goats and its Production Systems

The average numbers of goats owned by the farmers was 4.10 head per households, the range was two up to eight head (Table 2). The majority of those goats were owned by farmers themselves (76.19%) while 23.81% of them were owned through sharing systems. The composition of goats were dominated by adult and pre-weaning goats, on average it was 1.91 head (46.51%) and 1.21 head (30.23%), while post weaning and young goats were 0.33 and 0.62 head, respectively. The high composition of pre-weaning and adult goats can be understood, since the farming system applied by the farmers was breeding, 90.48% farmers stated that breeding was the main reason for they keep goats.

Land owned by the farmers was relatively small, it was varied from 86 up to 20,000 m² and the average was 1,782.62 m², it consisted of yard, dry land and paddyfield. The majority of land was paddyfield with the average ownership was 962.38 m². Land ownership is critical point for the
farmers, because it can be the sources of forages for their goats, however, the number of land possessed by farmers were relatively small.

The objective of keeping Kejobong goats was the main factor affecting the way of goats are kept. Keeping Kejobong goats for saving, which is a kind of insurance against foreseen and unforeseen events, was the main reason for keeping goats. On average, 85.71% farmers stated that they keep goats for saving reason, while only 14.29% stated that they keep goats for profit reason. It is in line with the statement of Budisatria et al. (2007) that main reason for keeping goats is saving. However, none of farmers stated that they keep Kejobong goats for producing manure, it was contradictory result compared to others research (Sarwono et al., 1993; Djoharjani, 1996; Subandiyo, 1998; Budisatria 2000; Budisatria, 2006). One reason given for this condition was goats manure were considerably low in quantity, so the farmers have not interested on keeping goat for manure reason. In the study area, manure to fertilize the land are usually from cattle and anorganic fertilizer.

All of Kejobong goats were kept under confinement systems none of the farmers keep goats under grazing or mixed systems, as presented in Table 2. The fact that low land possession and low involvement of household labour could be the major limitation for the farmers to keep goat under grazing or mixed systems. Budisatria (2006) stated that limited availability of household member for working with small ruminants could be the main reason why farmers kept their goats

Table 2. The numbers of goats, reason for keeping goats and its production systems

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Range</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of goats per household (head)</td>
<td>2 - 8</td>
<td>4.10</td>
</tr>
<tr>
<td>Goats’ composition (head) :</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre-weaning (0-3 months)</td>
<td>1.24</td>
<td></td>
</tr>
<tr>
<td>Post-weaning (3-6 months)</td>
<td>0.33</td>
<td></td>
</tr>
<tr>
<td>Young (6-12 months)</td>
<td>0.62</td>
<td></td>
</tr>
<tr>
<td>Adults (more than 12 months)</td>
<td>1.91</td>
<td></td>
</tr>
<tr>
<td>Status of goats’ owned (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Self owned</td>
<td>76.19</td>
<td></td>
</tr>
<tr>
<td>Sharing</td>
<td>23.81</td>
<td></td>
</tr>
<tr>
<td>Land owned (m²):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>House compounds and surrounding</td>
<td>0 – 5.000</td>
<td>413.10</td>
</tr>
<tr>
<td>Dry land</td>
<td>0 – 5.000</td>
<td>407.14</td>
</tr>
<tr>
<td>Paddy field</td>
<td>200 – 20.000</td>
<td>962.38</td>
</tr>
<tr>
<td>Reason for keeping Kejobong goats (%):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saving</td>
<td>85.71</td>
<td></td>
</tr>
<tr>
<td>Manure</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Profit</td>
<td>14.29</td>
<td></td>
</tr>
<tr>
<td>Farming systems (%):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feedlot</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Breeding</td>
<td>90.48</td>
<td></td>
</tr>
<tr>
<td>Mixed system</td>
<td>9.52</td>
<td></td>
</tr>
<tr>
<td>Management system of goats (%):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Confinement</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Grazing</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Mixed</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Ability to detect heat (%):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Excellent</td>
<td>9.52</td>
<td></td>
</tr>
<tr>
<td>Good</td>
<td>9.52</td>
<td></td>
</tr>
<tr>
<td>Fair</td>
<td>42.86</td>
<td></td>
</tr>
<tr>
<td>Bad</td>
<td>38.10</td>
<td></td>
</tr>
</tbody>
</table>
on confinement systems. Grazing was usually done by the children, however, since the children have not involved too much on keeping goats, farmers have changed their management system from grazing or mixed into confinement. Other reason was most farmers have opinion that goats are better to keep on confinement because of their habit as a browser, while grazing are said to be suitable for sheep, it was in line with statement of Peters (1988) and Budisatria et al. (2010).

The choice to confine goats all days could be also caused by limited access on grazing areas. Over the years, the intensification of land use for crop production has resulted in major changes in small ruminant management. Every arable piece of land is used for the production of human food. Even the dikes between the rice fields on which formerly grass was allowed to grow, are now sometimes used for growing crops such as cassava. A higher demand for crops means, however, that common or private grazing lands become scarce. This process started long ago and still continues today in many parts of Indonesia. Grazing areas are turned into paddy fields. These developments have a great impact on the way small ruminants are kept. These developments have led to a shift in small ruminant production systems from grazing into more intensive. Nowadays the vast majority of small ruminants in Indonesia are kept in confinement (Knipscheer et al., 1984).

Exterior Characteristic of Kejobong Goats

The type of animals and their production capability can be predicted based on the body shape and exterior characteristic. Exterior characteristics is an important information and can be used as initial stages to judge and select potential animal, it could be proved through research by taking factors affecting the animal into account (Sosroamidjojo and Soeradji, 1984). Information on the body size of male and female Kejobong goats at various age was presented in Table 3.

<table>
<thead>
<tr>
<th>Age (months)</th>
<th>n</th>
<th>Sex</th>
<th>Exterior characteristics (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>G</td>
</tr>
<tr>
<td>1-3 ns</td>
<td>15</td>
<td>Male</td>
<td>43,2±3,18</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>Female</td>
<td>43,2±4,40</td>
</tr>
<tr>
<td>6 ns</td>
<td>22</td>
<td>Male</td>
<td>57,9±1,35</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>Female</td>
<td>58,4±1,14</td>
</tr>
<tr>
<td>12 ns</td>
<td>12</td>
<td>Male</td>
<td>68,3±2,04</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>Female</td>
<td>68,6±1,04</td>
</tr>
<tr>
<td>18 ns</td>
<td>16</td>
<td>Male</td>
<td>66,0±1,51</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>Female</td>
<td>68,6±</td>
</tr>
<tr>
<td>24 ns</td>
<td>9</td>
<td>Male</td>
<td>74,0±3,06</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>Female</td>
<td>71,4±1,31</td>
</tr>
<tr>
<td>36 ns</td>
<td>5</td>
<td>Male</td>
<td>72,0±1,20</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>Female</td>
<td>75,5±2,01</td>
</tr>
<tr>
<td>>36</td>
<td>0</td>
<td>Male</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>Female</td>
<td>93,5±5,51</td>
</tr>
</tbody>
</table>

Non signifikan, G = Heartgirth, BL = Body length, SH = Shoulder height, EL = Ear length

There is a tendency that female Kejobong goats at one month to 12 months olds have better body size than those of male, while for goats more than 12 months old, male Kejobong goats have better body size than those of female. Furthermore, body size of Kejobong goats have improved in conjunction with their age, the older goats, the better body size they have, it was caused by during the growth, body compartment and body tissue are gradually developed until it reach the true characteristics. Statistical analysis showed that the body size of male and female Kejobong goats at various age did not significantly differ. Heart girth of male and female pre-
weaning goats (1-3 month old) was around 43 cm, while body length, shoulder height and ear length were 37-39 cm; 42 cm and 17-18 cm, respectively. At six month olds, the exterior characteristics were 58; 49-51; 55-58 and 18 cm, respectively. The exterior characteristics of Kejobong goats were improved gradually in line with their ages. At one year old up to more than three years old, the range of heart girth, body length, shoulder height and ear length were 68.3-93.5; 54.8-66.3; 62.0-68.8 and 18.5-23.3 cm, respectively. Nugroho et al. (2007) found that the average of body size of adult male and female Kejobong goats were 22 and 18.27 cm for ear length, 65.58 and 66.20 cm for shoulder height, respectively, while Listyarini et al. (1995) on her research found that body size of adult Kejobong goats were 14.4; 78.7; 50.2 and 58.6 for ear length, heartgirth, body length and body height, respectively. The differences on exterior characteristics of Kejobong goats caused by many factors, Soeparno (1992) stated that growth and body size development are affected by ages, breed, genetic, sex, environment and management, while Hardjosubroto (1994) explained that quantitative traits of animal are depend on the genetic and environmental factors, exterior characteristics is part of growth process of animal.

CONCLUSIONS

Kejobong goats were kept by old farmers with low educational background, small numbers owned and traditional management. Young female Kejobong goats under less than one year old have better exterior characteristics than those of male, in contrast, adult male Kejobong have better exterior characteristic than female.

LITERATURE CITED

Certificate

It's hereby certified that

I Gede Suparta Budisatria

has participated as presenter in The 5th International Seminar on Tropical Animal Production (ISTAP)
“Community Empowerment And Tropical Animal Industry”
on October 19 - 22, 2010 in Yogyakarta
held by Faculty of Animal Science, Universitas Gadjah Mada, Indonesia

Faculty of Animal Science
Universitas Gadjah Mada,
Dean

Prof. Dr. Tri Yuwanta

Organizing Committee,
Chairman

Budi Guntoro, Ph. D.