Preface

Wilujeng Sumping,

Welcome to Bandung to the International Conference on Instrumentation, Communication, Information Technology and Biomedical Engineering (ICICI-BME) 2011.

On behalf of the organizing committee, we are delighted to welcome all of the participants to the ICICI-BME 2011. This biennial conference is organized under the auspices of the Institut Teknologi Bandung (ITB), Indonesian Sensor and Actuator System Society (ISASS), Indonesian Biomedical Engineering Society (IBES) and sponsored by the Faculty of Mathematics and Natural Sciences, School of Electrical Engineering and Informatics, Faculty of Industrial Technology, Faculty of Mechanical and Aerospace Engineering of ITB and IEEE Engineering in Medicine and Biology Society (EMBS).

ICICI-BME is dedicated to the presentation and discussion of the latest developments and ideas in instrumentation, measurements, communication, information technology and biomedical engineering, in both theory and application.

This conference also aims to strengthen the collaboration among international researchers, scientists, engineers and industrial players in the fields of science and engineering. It is designed to be a meeting point for those who are involved, to globally exchange and share their views, ideas and advances in science, technology, and industrial aspects.

My gratitude to many people which helped making this conference a reality, to all of our invited speakers and guests, and for all of our committee members for their effort to ensure the success of this conference. Finally, I hope that all of participants will learn new things, make new contacts, get new ideas and have fruitful discussion while having a pleasant experience during our conference in Bandung.

Hatur nuhun, Thank you

Mitra Djamal & Tati L. R. Mengko
Chairman of ICICI-BME 2011
ICICI-BME 2011 Committee

General Chair
M. Djamal (ITB, INA)

Advisory Board
Akhmaloka (ITB, INA)
Umar Fauzi (ITB, INA)
Suwanto (ITB, INA)
Hermawan K. Dipojono (ITB, INA)
Yatna Y. Martawiryta (ITB, INA)
H.-K. Choi (Inje, Korea)
Y. Fujii (Gunma, JPN)
H. Grain (Latrobe, AUS)
K. Ito (Chiba, JPN)
D. Kumadi (ITB, INA)
H.-D. Liess (UniBw. Muenchen, D)
M. Liess (RheinMain, D)

T.L.R. Mengko (ITB, INA)
N. Yoshiura (Saitama, JPN)
L. Nakajima (Tokai, JPN)
J. Kaewkhao (NPRU, Thailand)
J. Rodrigues (UBI, Portugal)
K. Kurita (Kochi, JPN)
A.B. Sukmono (ITB, INA)
K. Schilling (Wuerzburg, D)
S. Serikawa (Kyushu, JPN)
S. Soegijoko (ITB, INA)
B. Sitohang (ITB, INA)
H.-R. Traenkler (UniBw. Muenchen, D)
G.J. Verkerke (Groningen, NL)

Program Committee
C. Imawan (ITB, INA)
E. Joelianto (ITB, INA)
Kusminarto (UGM, INA)
M.H. Purnomo (ITS, INA)
K.E. Pumama (ITS, INA)
Y. Samyudia (Curtin, MY)
T.A. Sardjono (ITS, INA)
S. Satira (ITB, INA)
T. Sumardi (UI, INA)
Suprijadi (ITB, INA)
E. Supriyanto (UTM, MY)

L. Umar (Riau, INA)
B. Widowati (UGM, INA)
W. Widanarto (Unsoed, INA)
Yulkiifli (UNP, INA)
T.C. Dirgantara (ITB, INA)
Khairunnisha (ITB, INA)
D. Kumadi (ITB, INA)
H. Malasan (ITB, INA)
Z. Su‘ud (ITB, INA)
G.A.P. Saptawati (ITB, INA)
Table of Contents

Keynote Address

Development of lead free radiation shielding glass: experimental and theoretical approach
J. Kowikhaa

Proposal of a Touch Panel Switch with the Function of Bending and Addition - One of a New User Interface
Seichi Serikawa and Liang Zhang

Instrument for Measuring Astronaut Body Mass
Yusaku Fuji, Akihiro Takenaka, Koichi Wakatsa, William Thornton and Kazuhito Shimada

Discussion on Business of Free Software Products - through E-Jikei Network Project
Noriaki Yoshiura

Tele-Medicine Techniques for Remote Support of Patients in Dialysis and COPD
Klaus Schilling

Novel Measurement Method for Physical Activity Based on Electrostatic Induction Technique
Koichi Kurita

Robotics, Automated Test & Measurement

GPS Water Vapor Monitoring and TroWav Updated for ENSO Studies
Wayan Suparta, Mandep Singh Jit Singh, Mahd. Alaudin Mohd. Ak, Baharudin Yatim and Ahmad Norazhar Mohd Yatim

A Preliminary Investigation Towards Test Suite Optimization Approach for Enhanced State-Sensitivity Partitioning
Myzatul Akmar Sepaat and Saimi Baharom

Integration of GPS-INS with Kalman Filter For Rocket Navigation
Romi Wiryadinata, Thomas S. Widodo, Waluyo Widada, Sunarso, Sri Kliwati

Consensus-Based Controllers for Spacecraft Attitude Alignment: Simulation Results
Harry Septianto, Bambang Riyanto-Triaksono, Arief Syachu-Rohman and Ridanto Eko-Poetra

Acoustic Analysis of High Care Unit (HCU) at Hospital “X” in Bandung, Indonesia
Febri Riana, Joko Sarwono, FX Nugroho Soelami

Simplified Q-Learning for Holonomic Mobile Robot Navigation
Widyawardana Adiprawito, Adang Sowanid Ahmad, Joko Sembiring, Bambang R. Triaksono

A Camera-Based Autonomous Mobile Robot on A Simple Simulated Highway
Brandon Adrian Marcellino, Endrowdhes Kuantama and Sofyan

Communication & Security

Entropy Simulation of Digital Information Sources and the Effect on Information Source Rates
Edmond Febrinicko Amary and Iham Wahid

Security Metrics: A Brief Survey
Tita Wuliyu Purboyo, Budi Rahardjo and Kuspriyanto
Development of A Single Square Ring Reflectarray Element for Bandwidth Enhancement
Sti Hafizah Yusop, Norzobiah Ismair, Mohammad Taqiq Ahmad, and Muhammad Yusof Ismail

An ASIC Implementation of Puncture and Spatial Stream Parser for MIMO Wireless LAN System
Andjas W. Angsana, Yuhei Nagaio, Masayuki Kurosaki, and Hiroshi Ochi

Enhanced Bandwidth Reflectarray Antenna Using Variable Dual Gap
M.Y. Ismail and N.H. Sulaiman

Efficient Tag-to-Tag Near Field Communication (NFC) Protocol for Secure Mobile Payment
Emir Husni, Kuspriyanto, Noor Basaruddin, Titi Parbaya, Sugeng Purwanto, Huda Ubaya

3-Dimensional Analysis of Ground Penetrating Radar Image for Non-Destructive Road Inspection
Azizah, Antonius Dermo Setiawan, Andriyanto Bayu Sukmana

BIOMEDICAL ENGINEERING

A portable screening system for onboard entry screening at international airports using a microwave radar, reflective photo sensor and thermography
Guanghao Sun, Shigeto Abe, Osamu Takes and Takemi Matsui

Coronary Angiogram Stabilization for Qube Values Calculation Using SIFT Method

Automated Microaneurysm Detection Using Mathematical Morphology
Andimes Andi Purwita, Kresna Adityawibawa, Ashfah Darmay, Made Widhi Surya Atman

Low-Cost Automation of Gram's Microbiology Staining Method
Gerardo Kenny Rumindo, Maruli Pandjaitan, Arka Djayadi

Preliminary Study of Antivirus for Human Immunodeficiency Virus (HIV) using Combined Protease Enzyme (Bromelain) And Lipozyme
Yonathan Audhiyha Suhara, Maruli Pandjaitan and Tiuon Nugraha

Study of Efficaciousness of Bromelain on Mammalian Cell Culture
Monica Lestari, Maruli Pandjaitan and Joko Pamungkas

Direct Reading Flame Photometer Using Digital Photography and Image Processing
Aragha M. Panditroo

CT Lung Image Filtering Based on Max-Tree Method
Amanda, I Ketut Eddy Purnama and Mauridi Heru Purnama

Detection Method of Cerebral Aneurysm Based on Curvature Analysis from 3D Medical Images
H. Praseya, T. L. R. Mengko, O. S. Santoso and H. Zakaria

The Effect of Sericin Application Over Hydroxyapatite Surface on Osteoblast Cells Proliferation
Siti Suroin Ays and Widowati Siswowidjaja

Abnormal Condition Detection of Pancreatic Beta-Cells as the Cause of Diabetes Mellitus Based on Iris Image
I Putu Dody Lesmana, I Ketut Eddy Purnama, Mauridi Heru Purnama

Signal Enhancement in Post-Processing of Multiple-Voxel Magnetic Resonance Spectroscopy
Yamrun Dwihapsari, J.P. Mostert, J.M. Hoogduin

Comparison Studies of 2D and 3D Ultrasound Biparietal Diameter for Gestational Age Estimation
Lai Khin Wei, Lee Mee Yun, Tan Lee See and Eko Supriyanto

Ultrasound Time Mapping Based Human Face Identification System
N. M. A. Sumarang, M Halikat Satria and Eko Supriyanto
Adhi Amindyaji, Alva Edy Tanowi and Punto Dewo

Sensitivity Analysis of Silicon MEMS Thermal Flow Sensor for Spirometer Application
Ilham Haradi

Using Pulse Oximetry Method As A Non Invasive Indicator of Blood Perfusion In Neonates
Nazarian Mohd Noor, Mohd Nasir Taib and Rosmina Jaafar

Development of ECG Signal Interpretation Software on Android 2.2
Kristoforus Harmawan, Audia Arf Ikandar and Regina N. Hartono

Noninvasive Blood Pressure (NIBP) Measurement by Oscillometric Principle
Rosmina Jaafar, Hisham Mohd Dasa, Zukifil Mahnoordin, Muhammad Rosli Abdullah, Zarimia Zainuddin

Computational Hybrid Level-Set and Region Growing Techniques: A Strategy for 3D Fast Segmentation of Medical Images
Abdul fattah A. Aboaba, Shihab A. Hameed, Othman O. Khalfa, Aicha H. Abdalla

Image Guided Surgery (IGS) Model for Emergency Surgical Intervention (ESI)
Abdul fattah A. Aboaba, Shihab A. Hameed, Othman O. Khalfa, Aicha H. Abdalla, Rahmat H. Harun, Nurzaini Rose Mohd Zain

Vessel Enhancement Algorithm in Digital Retinal Fundus Microaneurysms Filter for Nonproliferative Diabetic Retinopathy Classification
R. Vidyasthari, J. Sevani, and T.L.R. Mengko, H. Zakaria

Design and Construction of Thermally Combined Microcurrent Electrical Therapy Device for Rheumatoid Arthritis Treatment
Yuda G. Hadipradja, Audia A. Iskandar, and Tutun Nugroho

Bicep Brachii's Force Estimation using MAV Method on Assistive Technology Application
Reza Darmakusuma, Ary S. Pratiyanto, Adi Indrayanto and Tuti L. Mengko

Study and Design Framework for e-Dengue Teleconsultation System
Andik Setyono, Md. Jahangir Alam and Beatrice Ann Maria Saosai

Design of a Decision Support System using Open Source Software for a Home Telehealth Application
Mas S. Mohktar, Kezhang Lin, Stephen J. Redmond, Jim Basileakis and Nigel H. Lovell

Effective Bandwidth Allocation Algorithm for Medical Device Wireless Network
Indra H Mulyana, N. M. A. Sumaran, Norlaili M Sofri, and Eko Supriyanto

Role of Pressure and Wall Shear Stress in Initiation and Development of Cerebral Aneurysms
Nedyo Utami, Hasbullah Zakaria, Tuti L R Mengko, and Oepri S. Santosu

Development of Automatic Continuous Passive Motion Therapeutic System
Michael Khairis Saptura and Audia Arf Ikandar

Comparison of Shear and Microtensile Failure Stresses in the Repair of Dental Composite Restorations
Margareta Rinastiti, Widowati Sawomihardjo and Mutlu Ozcan

3D Kinematics of Human Walking Based on Segment Orientation
S. Mhidari, A. I. Hendra, T. Dirgantara, A. I. Mahyuddin

Development of an Optical Motion-Capture System for 3D Gait Analysis
S. Mhidari, Ferryanto, T. Dirgantara, A.I. Mahyuddin

Wearable Gait Measurement System Based on Accelerometer and Pressure Sensor
E. Pranikesw, T. L. R. Mengko, H. Zakaria
New Generation of Medical Implants: Metallic Biodegradable Coronary Stent
Hendra Hermawan, Diego Mantovani
399

In Vivo Study of Hydroxyapatite-Chitosan and Hydroxyapatite-Tricalcium Phosphate Bone Graft in Sheep's Bone as Animal Model
Deni Noviana, Gunarti Sosdiono, Dudung Abdullah, Roden Harry Soeharto, Mohamad Fikriul Ulum, Riki Siswandi, Sribadi Agungpriyo, Santi Purwanti, Asmawati Ahmad, Ayu Berlianthy, Ki Agus Dahlani, Djawwoundi Soedjoko
403

Synthesis of Hydroxyapatite from Local Bovine Bones for Biomedical Application
Bora Hilmi, Margareta Rinastryti and M.K. Herliansyah
409

CONTROL, MODELING & SIMULATION

Sliding Mode Power Control of PMSG Based Variable Speed Wind Energy Conversion System
Y. Errami, M. Oussaid, M. Maaroufi, M. Benchagra and M. Hiltel
174

Application of Backstepping Controller for Maximum Power Extraction of Wind Turbine
Mohamed Benchagra, Mohamed Maaroufi, Mohamed Ouassaid
180

Simulating The Movement Of The Crowd In An Environment Using Flocking
Melton Dewi, Mach Hariadi and Maudithi Hery Purnomo
186

Simulation of Spontaneous Emission Power on Silicon Based Quantum Dot with Variation of Light Source and Dot Size
Yudhistira, Firtra Rahayu, and Yudi Darmo
192

Contouring Posterior and Lateral Tibia of Javanese People Based on X-Rays Images
Suytino, B. Artiwicka, R.R.A. Sariwijaya, Y.H. Nugroho, M. Mahardika, P. Dewa
197

Digital Simulation of the FACTS System with 60-pulse GTO-based Voltage Source Converter
Rakhmad Syafutra Lubis
201

Modeling and Simulation of Generalized Unified Power Flow Controller (GUPFC)
Rakhmad Syafutra Lubis
207

Static Output Feedback Control Synthesis for Nonlinear Polynomial Fuzzy Systems Using a Sum of Squares Approach
Bono Wirawati Sanjaya, Bambang Ryantra Triaksono, Arief Syaichu-Rohman
214

SIGNAL PROCESSING

Wyner-Ziv Video Coding With Improved Motion Field Using Bicubic Interpolation
I Made Oka Widyantra, Wirawan and Gamantha Hendrantoro
218

Feature Selection via Dimensionality Reduction for Object Class Recognition
Nordnya Mansor, Alfiyana Abdul Halim, Mandawa Rajeswari and Dhamesh Ramachandram
223

Fundamental Frequency Estimation of Pathological Speech using Linear Phase Wavelet
Dhury Arianto
228

Type 2 Fuzzy Adaptive Binary Particle Swarm Optimization for Optimal Placement and Sizing of Distributed Generation
Adi Soepriyanto and Muhammad Abdillah
233

Color Image Processing for Measuring Length Deformation in Compression Test
Riska Ekawita, Eko Widiatmoko, Suprijadi, Hasbullah Nowir, Endra Susila, Khairunnisa
239

Fuzzy Assisted Parameter Selection Rule in Regularized Newton Algorithm of Electrical Impedance Tomography
Dedy Kurniadi, Mohammad Rohmanuddin and Anton Maulana
242
PHYSICAL & CHEMICAL EFFECT

Hybrid Surface Treatment for Improving Mechanical and Surface Properties of AISI 316L Stainless Steel
B. Ruvianto, Sunyatno, M. Mahardika
315

Thermal Performance of Fuel Pellet Containing Large Grains and CerMet Pellet of UO2-Metal
Siswoardi and Jan Setiawan
318

Quantum Size Effect Simulation and Ge Composition on SiGe Quantum Dot for Intermediate Band Solar Cell Applications
Fitria Rahayu and Yudi Darmo
321

Synthesis and Characterization of Gd and Er Co-Doped Ceria As Solid Electrolyte for IT-SOFC via Solid State Method
Arie Hardian and Ismunandar
326

Modeling Ionic Conduction in γ-Bi2VO4
Akram La Kilo, Bambang Prijamboedi, Muhammad A. Martoprawiro, and Ismunandar
330

Conductivity and solid state 29Si NMR studies of apatite-type lanthanum silicate prepared by hydrothermal method
Atiek Rosita Noviyantri, Bambang Prijamboedi, I. Nyoman Marsh, Rino R. Muki, Ismunandar
334

Temperature Dependent Study of Bi2V1−xGaxO4.5 (x = 0.1 and 0.15) Oxides
Ismunandar, Fatin Rusdi, Hasan Ramlan
338

Daniel Santoso, Fransiscus Dala Setiagin, and Deddy Susilo
342

SENSOR & ACTUATOR DESIGN

Measuring Air Pollutant Standard Index (ISPU) with Photonics Crystal Sensor based on Wireless Sensor Network (WSN)
Muhamad Azis, Enus Rustandi, Wenny Maulina, Mamat Rahmat, Husin Alatas, and Kudang Boro Seminar
348

Fabrication and Characterization of NO2 Gas Sensor Based On One Dimensional Photonic Crystal for Measurement of Air Pollution Index
K.B. Seminar, A.S. Yuwono
352

An Integrated Optical Instrumentation for Measuring NO2 Gas Using One Dimensional Photonic Crystal
Enus Rustandi, Muhammad Azis, Wenny Maulina, Mamat Rahmat, Husin Alatas, and Kudang Boro Seminar
356

Measurements of Bowel Microdialysis Recovery with an Online Biosensor System
Emma P. Cocales, Sameer Deeba, George, B. Hanna, Martyn G. Boutelle, Ara Dorzi
361

Development of New Coated Wire Nitrate Selective Electrode Sensor for Determination of Nitrate Concentration in an Aqueous Sample
Budiarti, B., Indra Noviandri, Mitra Djamil and Maria Evita
366

Development of a New Giant Magnetoresistance Material Based on Organic Material
Mitra Djamil, Ramlu, Spanisoma Virak and Khairunnurjati
372
The Effect of Sericin Application Over Hydroxyapatite Surface on Osteoblast Cells Proliferation

Siti Sunarintyas and Widowati Siswomihardjo

Department of Dental Biomaterial, University of Gadjah Mada, Yogyakarta, Indonesia
(Tel: +62-274-515307, E-mail: sunarintyasiti@yahoo.com)

Abstract- Hydroxyapatite (HA) has been used clinically to treat bone defect. Modification of HA surface with respect to bone integration has been developed using treatments which have the potential to improve cell proliferation. Bombyx mori's sericin, a polymer protein that has polar side groups, have been known to accelerate cells attachment and proliferation. The aim of this study was to investigate the effect of sericin application over HA surface on osteoblast cells proliferation. HA discs (10 mm in diameter, 3 mm thick) were sintered. Three concentration of sericin (0.01, 0.5, and 0.1%) were applied on HA surface. Water contact angle was measured to evaluate the hydrophilicity of the disc surface. The discs were then seeded with MC3T3E1 osteoblast cells for proliferation test. The data were analyzed by Anova and LSD. Contact angle measurement showed significant increases of the hydrophilicity on sericin-modified HA surface. The amount of cells proliferation on HA discs (1.40±0.26) was significantly different (p<0.05) with HA+sericin 0.01% (2.23±0.20), HA+sericin 0.5% (2.33±0.24), HA+sericin 0.1% (2.37±0.20). Variation of sericin concentrations applied over HA did not influence any significant difference on cells proliferation (p=0.05). The conclusion was sericin application over HA surface increased the amount of osteoblast cells proliferation. Concentration of sericin application over HA (0.01, 0.05, 0.1%) did not influence cells proliferation.

Keyword: hydroxyapatite, sericin, Bombyx mori, proliferation, osteoblast

I. INTRODUCTION

Drawbacks to current repair strategies for patients suffering from bone defects include tissue availability and donor site morbidity. Bone tissue engineering is an emerging technique that offers potential solutions to these problems. Scaffolds may be used to support and encourage cellular activity and promote faster healing. Hydroxyapatite (HA) is a calcium phosphate ceramic that has been used clinically and has been shown to have bioactive, osteoconductive and biocompatible properties. It may be possible however, to further enhance HA with respect to bone integration using treatments that have the potential to improve cell proliferation and thus improve implant integration and wound healing.

The process of cell interactions on materials is highly dynamic and depends on various parameters influencing the cell responses [4]. Cell attachment and proliferation on biomaterials depend on surface characteristic such as wettability (hydrophilicity or hydrophobicity or surface free energy), chemistry, charge, topography and rigidity [4-5]. Amino-, hydroxyl-, carboxyl-, sulfonic-, acylamino- groups favor cell attachment and growth [6]. Positively charged surfaces seem better for cell adhesion, spreading and growth than negatively charged. Polymer surface grafted with amine groups is best for cell adhesion, spreading and growth in aqueous cell culture medium than hydroxy groups and amide groups due to its positively charged [5].

It has been found that osteoblast adhesion strongly correlates with substratum wettability, with high rates of cell attachment on relatively hydrophilic surfaces (contact angle < 65°) and low attachment rates on hydrophobic surfaces (contact angle > 65°) [7]. Carboxylic acid groups also favor cell attachment and proliferation due to the increased of wettability [94].

Sericin, a natural protein derived from arthropods e.g. silkworm Bombyx mori, has recently investigated for its activities in the biotechnological field. Sericin protein is highly hydrophilic and made of 18 amino acids most of which have strongly polar side groups such as hydroxyl, carboxyl and amino groups and characterized by high serine [8]. Several studies showed that sericin supports cell adhesion and proliferation when used in pure form and blended in matrices. Sericin enhances the attachment and growth of mouse fibroblast when used as a substratum as high as collagen [9]. In a dose dependent manner, sericin accelerates proliferation of mammalian cells line in culture. Sericin can be coated on biomaterial surface by chemical reaction using N-(3-dimethylaminopropyl)-N-ethylcarbodiimide (EDC) and N-hydroxysuccinimide (NHS) as coupling agents, and has been shown to enhance functionality in promoting osteoblast adhesion, proliferation, and alkaline phosphatase activity [11].

Although HA has already been applied as tissue engineering material, and sericin has already been known to enhance cells attachment and proliferation, there is no data on the application of sericin over HA surface and its potency to enhance cells proliferation. This study was aimed to investigate the effect of...
sericin application over HA surface on osteoblast cells proliferation.

II. MATERIALS AND METHODS

Materials

The HA used in this study was synthesized from local gypsum (Kulon Progo, Yogyakarta, Indonesia). Sericin was extracted from cocoon shells of the silkworm Bombyx mori which were obtained from PT Yarsilk Goramahottama Textile Industry (Yogyakarta, Indonesia). Osteoblast cells of MC3T3E1 were obtained from Niigata University. Diammonium hydrogen phosphate (DHP), sodium carbonate, NHS, EDC, Phosphate Buffer Saline (PBS), alpha minimum essential medium (alpha MEM), fetal bovine serum (FBS), penicillin and streptomycin were purchased from Sigma-Aldrich Chemicals (Bornem, Belgium)

Preparation of HA discs

The synthesis of HA was conducted as Katsuki [12] and Pujianto [13]. The gypsum powder was obtained by pulverizing the gypsum rock. Gypsum powder (20 g) and 800 ml of 1 M DHP were mixed at 100°C for 20 minutes in a Pyrex glass using a microwave digestion system. The system was operated at frequency of 2.45 GHz. After the hydrothermal reaction, reacted sample were washed with distilled water to remove residual ion and then dried. Powder of HA (0.4 g) was put in a mold (10 mm in diameter, 3 mm thick) and compacted with the pressure of 80 MPa for 30 s, followed by sintering at 1300°C for 4 hours with a heating rate of 60°C/h.

Preparation of sericin

The extraction of sericin was done as Zhang [11]. Cocoon shells of Bombyx mori were cut into pieces (1x1 cm). One liter of 0.2% sodium carbonate solution containing 40 g of the cocoon was boiled for 1 hour and then filtered through a glass microfiber filter in order to remove fibroin and other impurities. The filtrate was then dialyzed using membrane cellulose against deionized water for 2 days by changing the water daily to remove the ions and other impurities and then freeze dried at -60°C for 15 hours.

Application of sericin over HA surface

The surface modification method was adopted from Cui [14]. Disc of HA was placed in 1 M NaOH solution at 50°C for 1 hour then rinsed with 0.1 N HCl and distilled water at room temperature. The disc was precipitated for 1 hour at room temperature in PBS solution containing 1 mg/ml of NHS and 10 mg/ml EDC. The substrates were then transferred to PBS solution containing of sericin with different concentrations (0.01, 0.05, and 0.1%). The reaction was allowed to proceed for 6 hours at room temperature. Contact angles were measured with a sessile drop method. A 5 μl water droplet was placed on the disc surface and the static contact angle was measured using digital camera (Canon 30D) with macro lens EF 100 mm 1:2.8. Three measurements on different areas of the surface were obtained for each reported contact angle value.

Cell culture

Mouse osteoblast cell line MC3T3E1 cells were cultured in alpha MEM supplemented with 10% FBS, 100 U/mL penicillin and 100 mg/mL streptomycin. The cells were incubated at 37°C in a humidified atmosphere of 5% CO2 and 95% air with the growth medium changed every 48 hours. The cultured cells were detached by trypsinization (0.25% trypsin-EDTA), suspended in fresh culture medium and used for the designed proliferation assay.

Cell proliferation

The proliferation of osteoblast cells on substrates was examined by counting the number of cells after 4 days [15]. The substrates were placed into a 24-well plate and seeded with a density of 2000 cells/cm2. The substrates were rinsed with PBS to remove unattached cells. Adherent cells were then detached from the substrates by trypsin and measured via a hemocytometer.

III. RESULT AND DISCUSSION

In this study, Bombyx mori’s sericin had been used to improve cellular interaction capability of HA surface. Sericin was covalently immobilized using carbodiimide and NHS in three different concentrations (0.01, 0.5, and 0.1%). To covalently immobilized protein molecules in the chemically inert biomaterials, reactive groups, in this case carboxyl, must be firstly introduced as coupling sites. Hydrolysis of HA was done by treating in NaOH solution to produce reactive groups. One problem in hydrolysis process was the molecular weight of material would be partially sacrificed, thus the reaction conditions should be well controlled [16]. When material was immersed in NaOH solution, hydrolysis process produced carboxyl on the material surface. It followed by the activation of the carboxyl group with water soluble carbodiimide. The NHS was added to form more stable amide bonds. Final reaction was between the activated carboxyl groups and the amino groups of sericin that produce amide bond (N-H).

Water contact angle was measured to evaluate the hydrophilicity of the surface materials as in table 1. Measurement of the contact angle on HA and sericin-modified HA surfaces gave an indication of the relative hydrophilicity of these surfaces before and after the modification. Ordinarily, more hydrophilic surfaces showed smaller contact angles value. All of sericin-modified HA groups demonstrated lower contact angle value significantly, implying a great improvement of the hydrophilicity. The contact angle of HA surface was measured to be approximately 87.46° and
decreases to about 42° after modified with sericin. Sericin contains a large amount of amino acids with polar functional groups such as hydroxyl, carboxyl, and amino groups [17]. The strongly polar groups of sericin gave rise to a more wettable surface on sericin-modified HA as indicated by the changes of contact angle. Sericin coated on polystyrene films has increased the hydrophilicity of the films, with contact angle of 84° on polystyrene and 46° on sericin coated polystyrene [9].

<table>
<thead>
<tr>
<th>Table I</th>
<th>MEAN AND STANDARD DEVIATION OF CONTACT ANGLE SURFACE (DEGREE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material</td>
<td>Contact Angle (Degree)</td>
</tr>
<tr>
<td>HA</td>
<td>87.460 ± 1.040</td>
</tr>
<tr>
<td>HA + Sericin 0.01%</td>
<td>42.200 ± 1.010</td>
</tr>
<tr>
<td>HA + Sericin 0.05%</td>
<td>41.600 ± 1.320</td>
</tr>
<tr>
<td>HA + Sericin 0.1%</td>
<td>41.200 ± 1.120</td>
</tr>
</tbody>
</table>

Statistical analysis using one way Anova of the contact angle data showed that water contact angle of sericin-modified HA had significant lower than that of control HA (p<0.05) (table II). It means that the hydrophilicity of surface-modified HA with all sericin concentrations were greatly enhanced. Sericin with initial concentration of 0.01% had the lowest contact angle, however the hydrophilicity between groups of different sericin concentrations were not significantly different (p>0.05) (table III).

It was generally known that the hydrophilicity of a surface could affect the degree of cell adhesion and proliferation. Hydrophilicity of a material was believed to be a factor affecting the surface energy (surface tension) which might influence serum proteins that adhered to the material, and in turn governed the biological response, such as cell adhesion and proliferation [7]. Although hydrophobic surfaces tended to bind more protein [18], many cell studies had been reported that cells attached and spread more effectively on surface with proper hydrophilicity than on hydrophobic surfaces.

Human fetal osteoblast cell line (hFOB) had high attachment rates on relatively hydrophilic surfaces (contact angle θ<65°) and low attachment rates on hydrophobic surfaces (contact angle θ>65°) [19]. In a study on the interaction of different types of cells (Chinese hamster ovary, fibroblast, and endothelial cells) as well as serum proteins in terms of the surface hydrophilicity of polymeric materials was observed that the cells were adhered, spread, and grown more on the position with moderate hydrophilicity than on the more hydrophobic position. The maximum adhesion and growth of the cells appeared at around water contact angles of 55° regardless of the cell types used [20].

Table II

<table>
<thead>
<tr>
<th>Table II</th>
<th>SUMMARY OF ONE-WAY ANOVA OF WATER CONTACT ANGLE MEASUREMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sum of squares</td>
<td>df</td>
</tr>
<tr>
<td>Between groups</td>
<td>3989.995</td>
</tr>
<tr>
<td>Within groups</td>
<td>22.335</td>
</tr>
<tr>
<td>Total</td>
<td>4012.330</td>
</tr>
</tbody>
</table>

Table III

<table>
<thead>
<tr>
<th>Table III</th>
<th>SUMMARY OF LSD TEST OF WATER CONTACT ANGLE MEASUREMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Groups Treatment</td>
<td>Mean Difference</td>
</tr>
<tr>
<td>HA versus HA + Sericin 0.01%</td>
<td>36.175</td>
</tr>
<tr>
<td>HA versus HA + Sericin 0.05%</td>
<td>36.675</td>
</tr>
<tr>
<td>HA versus HA + Sericin 0.1%</td>
<td>36.550</td>
</tr>
<tr>
<td>HA + Sericin 0.01% versus HA + Sericin 0.05%</td>
<td>0.200</td>
</tr>
<tr>
<td>HA + Sericin 0.01% versus HA + Sericin 0.1%</td>
<td>0.375</td>
</tr>
<tr>
<td>HA + Sericin 0.05% versus HA + Sericin 0.1%</td>
<td>0.125</td>
</tr>
</tbody>
</table>

The cell studies was carried out to investigate the proliferation of osteoblast cells on sericin-modified HA discs. Table IV showed the number of cells proliferation after 4 days incubation. The result showed that the application of sericin over HA surface increased the amount of cells proliferation. Higher sericin concentration over HA surface tended to increase the amount of osteoblast cells proliferation. Statistical analysis of the data on cells proliferation was as table V.

Table IV

<table>
<thead>
<tr>
<th>Table IV</th>
<th>MEAN AND STANDARD DEVIATION OF OSTEOBLAST CELLS PROLIFERATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material</td>
<td>Proliferation (x10^3)</td>
</tr>
<tr>
<td>HA</td>
<td>1.400 ± 0.260</td>
</tr>
<tr>
<td>HA + Sericin 0.01%</td>
<td>2.230 ± 0.200</td>
</tr>
<tr>
<td>HA + Sericin 0.05%</td>
<td>2.330 ± 0.240</td>
</tr>
<tr>
<td>HA + Sericin 0.1%</td>
<td>2.370 ± 0.200</td>
</tr>
</tbody>
</table>

Table V

<table>
<thead>
<tr>
<th>Table V</th>
<th>SUMMARY OF ONE-WAY ANOVA OF OSTEOBLAST CELLS PROLIFERATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sum of Squares</td>
<td>df</td>
</tr>
<tr>
<td>Between Groups</td>
<td>1.4900</td>
</tr>
<tr>
<td>Within Groups</td>
<td>0.520</td>
</tr>
<tr>
<td>Total</td>
<td>2.420</td>
</tr>
</tbody>
</table>

Table V showed that there was a significant difference (p<0.05) among the sericin application over HA surface on cells proliferation. To determine later about the effect of sericin concentration, it was performed the LSD test as in table VI.

Table VI

<table>
<thead>
<tr>
<th>Table VI</th>
<th>SUMMARY OF LSD TEST OF OSTEOBLAST CELLS PROLIFERATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Groups Treatment</td>
<td>Mean Difference</td>
</tr>
<tr>
<td>HA versus HA + sericin 0.01%</td>
<td>0.830</td>
</tr>
<tr>
<td>HA versus HA + sericin 0.05%</td>
<td>0.930</td>
</tr>
<tr>
<td>HA versus HA + sericin 0.1%</td>
<td>0.970</td>
</tr>
<tr>
<td>HA + sericin 0.01% versus HA + sericin 0.05%</td>
<td>0.100</td>
</tr>
<tr>
<td>HA + sericin 0.01% versus HA + sericin 0.1%</td>
<td>0.130</td>
</tr>
<tr>
<td>HA + sericin 0.05% versus HA + sericin 0.1%</td>
<td>0.030</td>
</tr>
</tbody>
</table>
Table VI showed that there were significant differences (p<0.05) between the amount of osteoblast cells proliferation on HA surface versus sercin-modified HA surface in all sercin concentrations application (0.01, 0.05, 0.1%). There were no significant differences (p>0.05) between the amount of osteoblast cells proliferation on sercin-modified HA surface on different concentrations.

The proliferation of osteoblast cells on HA and sercin-modified HA after 4 days were compared. All of the sercin modified HA showed higher cell numbers than that of control HA, but there were no significant differences between three different concentrations of sercin. Although the cell numbers were significantly different, sercin modified HA did not show an increasing different proliferation.

Cells proliferation correlated with substratum surface wettability and functional groups on the surface. Moderately hydrophilic surface were shown better cells growth compatibility for fibroblast, Chinese hamster ovary cells and endothelial cells after 2 days of culture [20]. The hydrophilicity and functional groups of PLLA modification with chitosan also related with higher proliferation of chondrocytes [21], fibroblast [22] and osteoblast like cells [7]. Functional groups such as amine, hydroxyl and carboxyl also compatible for cell growth, and the behavior was similar to cell adhesion [5].

After attached on substratum, cells will undergo a progressive process of morphological changes and spreading before proliferate. This sequence of events was delayed and attenuated on poorly-cytocompatible hydrophobic substrata. Poorly cyto compatible surfaces exhibit characteristically-low attachment efficiency and long induction periods during which cells apparently engaged in a life or dead struggled to improve the pericellular environment by excretion of matrix [23]. Proliferation itself is a dynamic process regulated by cell adhesion as subsequent phase of attachment. The binding of ECM molecules to integrin receptors causes changes in the cytoskeleton that ultimately affect gene expression in the nucleus. Cell process receptors for growth factors that can act through a cascade of intracellular factors to alter gene expression that affect cell proliferation [18]. It explained that proliferation depends on the survival of cell attachment to a substratum.

Sercin significantly increased the cell proliferation when mixed with culture medium at concentration of 0.03 – 0.1%. Lower concentration did not show significant increasing in cell proliferation. However, higher concentration was severely harmful to the culture [10]. The result of this study indicated that the amount of immobilized sercin on HA surface was probably below the efficient concentration to enhance osteoblast proliferation. However, in this study, the amount of immobilized sercin could not be determined. As mentioned before, the amount of immobilized sercin depended on the amount of preactivated carboxyl groups created by hydrolysis process. This study was using one concentration of NaOH (0.1M) to create the carboxyl group on HA surface. The similar proliferation rate indicated that carbodiimide chemical reaction between carboxyl groups of HA and sercin with three different concentrations (0.01, 0.05, and 0.1%) resulted in the similar amount of immobilized sercin on HA surface but still below the amount needed to enhance cell proliferation.

Other concern of the covalently protein immobilization is that the natural conformation of the grafted protein might be changed [16]. Studies by Terada [10], Tsubouchi [24], and Minoura [9] used sercin in direct application without chemical reaction. In this study, the immobilization of sercin using carbodiimide chemistry might change the natural conformation of sercin protein which might slightly degrade sercin properties to enhance cells proliferation. The increase in cell count observed after 4 days of culture was due to the cell count. Since cell proliferation was occurred as subsequent phase after 24 hours of adhesion, the increases in cell count were to be attributed to enhanced initial cell attachment not to the sercin properties in accelerating cell proliferation.

The result of this study showed that the application of sercin over HA by concentrations of 0.01 – 0.1% did not differentiate cell proliferation. The wider range of sercin concentration to modify HA with carbodiimide chemistry needed to be determined to know the efficiency of sercin concentration to enhance osteoblast cells proliferation. The hydrolysis process to create preactivated carboxyl groups was also an important factor to be observed because it determined the final concentration of sercin that bound to HA surface.

For tissue engineering application, sercin-modified HA had to fulfill the requirement as an ideal scaffold material that compatible for the implanted cells. Therefore, more data about osteoblast cells behavior on sercin-modified HA such as its differentiation into specific cell phenotype would be needed. However, this research had contributed to show the initial cell response on sercin and to give alternative for surface modification of HA.

III. CONCLUSION

The conclusion of this study was that sercin application over HA surfaces increased the amount of osteoblast cells proliferation. Concentration of sercin application over HA (0.01, 0.05, and 0.1%) did not influence cells proliferation. Further suggestion related to this study was that further research would be needed especially on the wider range of sercin concentration to modify HA surface to observe the efficiency of sercin concentration to enhance cells proliferation. The hydrolysis process to create preactivated carboxyl groups was also an important factor to be observed because it determined the final concentration of sercin that bound to HA surface with regard to its effect on HA mechanical properties.

REFERENCES

