6th IBC PROCEEDING
THE 6th INDONESIAN BIOTECHNOLOGY CONFERENCE
“ENHANCING INDUSTRIAL COMPETITIVENESS THROUGH BIOTECHNOLOGY INNOVATION”
Surakarta, 6-7 September 2016

Editors:
Prof. Dr. -ing. Misri Gozan, M.Tech., IPM
Prof. Dr. Ir. Ahmad Yunus, M.S
Prof. Dr. Ir. Edi Purwanto, M.Sc
Prof. Dr. Ir. Djoko Purnomo, M.P
Prof. Dr. Ekowati Chasanah
Dr. Siswa Setyahadi
Dono Indarto, dr. M. Biotech., STt., Ph.D
Dr. Ir. Amalia T Sakya, M.Phil

Published by:
PROCEEDING
THE 6th INDOONESEAN
BIO TECHNOLOGY CONFERENCE
"ENHANCING INDUSTRIAL COMPETITIVENESS
THROUGH BIO TECHNOLOGY INOVATION"
SURAKARTA, 6 - 7 SEPTEMBER 2016

EDITORS:
Prof. Dr. Ir. Ahmad Yunus, M.S
Prof. Dr. Ing. Misri Gozan, M. Tech., IPM
Prof. Dr. Ir. Edi Purwanto, M.Sc
Prof. Dr. Ir. Djojo Purnomo, M.P
Prof. Dr. Eko Wati Chasanah
Dr. Siswa Setiyahadi
Dono Indarto, dr. M. Biotech., STt., P.hD.
Dr. Ir. Amalia T. Saka, M.Phill

Organized by:
UNIVERSITAS SEBELAS MARET

In collaboration with:

Published by:
Faculty of Agriculture
Universitas Sebelas Maret
ISBN : 978-602-14235-6-1

PROCEEDING

THE 6th INDONESIAN BIOTECHNOLOGY CONFERENCE
ENHANCING INDUSTRIAL COMPETITIVENESS THROUGH
BIOTECHNOLOGY INOVATION

6 - 7 SEPTEMBER 2016
UNIVERSITAS SEBELAS MARET
SURAKARTA

EDITORS:
Prof. Dr. Ir. Ahmad Yunus, M.S
Prof. Dr.-ing. Misri Gozan, M. Tech., IPM
Prof. Dr. Ir. Edi Purwanto, M.Sc
Prof. Dr. Ir. Djoko Purnomo, M.P
Prof. Dr. Ekowati Chasanah
Dr. Siswa Setyahadi
Dono Indarto, dr. M. Biotech., STt., P.hD.
Dr. Ir. Amalia T. Sakya, M.Phill

DESIGN & LAYOUT:
The 6th IBC Organizing Committee

Published by :
Faculty of Agriculture, Universitas Sebelas Maret
Telp/Fax : (0271) 637457

COPYRIGHT :
All right of the papers in this book are reserved to the individual authors, and all right of the other parts to conference committee. No part of this publication may be reproduced in any form or by any means, electronically or mechanically, or other wish without the prior permission the copyright owners. The author is fully responsible for the content of their papers.
42. The Comparison of Batch and Column Based Affinity Chromatography in Recombinant Human Erythropoietin (rhEPO) Purification [Popi Hadi Wisnuwardhani, Yana Rubiyana, Endah Puji Septisetyani, and Adi Santosos]... 454

43. Effect of Lysine And Histidine Residues on Nanoparticle Formation of Palmitoyl-Based Lipopeptide as Transfection Reagent for Non-Viral Gene Delivery Vehicle [Tarwadi*, Jalal A. Jazayeri, and Colin W. Pouton]...... 460

Topic Field: Microbiology Biotechnology................................. 471

44. Optimization Of Chitinase Production From Bacillus Sp WS 4F [Nuur Faridatun Hasanah, Deden R Waltam, Siswa Setyahadi, Dewi Nandyawati, Djamil, Farah Nabila].......................... 472

45. Comparison of Immunomodulatory Properties from Three Different Indonesian Local Isolates of Lactic Acid Bacteria [Agustinna Ika Susanti, Tan Tjie Jan, Merry Vidianti, Jap Lucy, Lisza1, Lulu Florencia, Christy, Reinhard Pinontoan]........... 478

46. Examination of Crispr/Cas System Type II-A in Streptococcus thermophilus Isolated from Local Dairy Product [Lisa Charisa Wijaya, Charles, Marcella Sugata, Jap Lucy, Agustinna Ika Susanti, and Tan Tjie Jan]... 484

47. Cloning and Activity Assay of Rekombinant Sucrose Isomerase Klebsiella pneumoniae in Escherichia coli B121 (DE3) [Feraliana, Sony Suhandono, Tali Kristianti, Maelfita Ramdani Moeis]........... 491

48. Microbial Desalinization Cell Using Tempe Wastewater as Substrate with Varying Phosphate Buffer Concentration and Salinity [Ginasesharita Hardiyanti, Rita Arbianti, Tania Surya Utami, Heri Hermansyah]......................... 496

49. Microbial Desalinization Cell with Leachate and Sodium Percarbonate as Naturally Buffering Electrolytes [Etri Dian Kamila, Tania Surya Utami, Rita Arbianti, Heri Hermansyah]............................. 503

Topic Field: Marine and Veterinary Biotechnology.................. 508

50. Structure and Mucopolysaccharide Type of Major Salivary Glands of The Sunda Porcupines (Hystric Javanica) [Teguh Budipitojo*, Elvinkan Ruth, Fitri Wulandari, Guntari Titik Mulyani, Yuda Heru Fibrianto].......................... 509

51. Temporary Recovery of Pancreatic B-Cells in Type 2 Diabetes Mellitus Induced Mesenchymal Stem Cell-Conditioned Medium [Widagdo Sri Nugroho*, Dwi Liliek Kusindarta, Heru Susetya, Ida Fitriana, Tri Wahyu Pangestiningsih, Yuda Heru Fibrianto, Sri Gustari, Teguh Budipitojo]........... 515

52. Gastrin-Releasing Peptide Receptor (GRPR) in The Bovine Uterus and Placenta [Teguh Budipitojo, Motoki Sasaki, Guntari Titik Mulyani, Daisuke Kondoh, and Nobuo Kitamura]........................... 520
STRUCTURE AND MUCOPOLYSACCARIDE TYPE OF MAJOR SALIVARY GLANDS OF THE SUNDA PORCUPINES (HYSTRIX JAVANICA)

Teguh Budipitojo1, Elvinka Ruth1, Fitri Wulandari1, Gunarti Titik Mulyani2, Yuda Heru Fibrianto3

1Department of Anatomy, 2Department of Internal Medicine, 3Department of Physiology, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia.

E-mail: budipitojo@ugm.ac.id

Abstract

Sunda porcupines is one of the rodent species endemic to Indonesia. Although the conservation status of Sunda porcupine is the least concern, their populations in the wild tend to dramatically decrease due to high interest of human consumption. Moreover, information related to the anatomical structure of their organ system is still limited. The purpose of this study is to identify the topography, anatomical structures and types of mucopolysaccharides produced by the major salivary glands of Sunda porcupine. The study used four female Sunda porcupines. Tissue samples of major salivary glands which include parotid, submandibular and sublingual glands were processed for paraffin method and analyzed using macroscopic observation, Hematoxylin-Eosin (HE), Alcian Blue-Periodic Acid Schiff (AB-PAS) and lectin histochemistry for 	extit{saphora japonica agglutinin} (SJA) and 	extit{wheat germ agglutinin} (WGA). The parotid gland was found in the preauricular region and along the posterior surface of the mandible, while the submandibular and sublingual glands were located on the floor of the mouth posterior to each mandibular canine. The parotid gland was divided into two lobules, each composed by different types of acini in a separate lobulation. HE staining showed that parotid gland looks unique because in the anterior lobe, the acini are dominated by serous cell-type, while the acini of posterior lobe are composed by mixed of serous and mucous cell-types. Submandibular gland acini consist of serous cells-type and sublingual gland acini are covered by mucous cell-type. All of three major salivary glands have complete duct system comprising intercalated, striated and excretory ducts. The acini of parotid gland contains acid and neutral mucopolysaccharides, the submandibular gland contain neutral mucopolysaccharides and sublingual glands contain acid mucopolysaccharides according to the AB-PAS staining method. Lectin staining using SJA and WGA indicates that acini in salivary glands of sunda porcupine contain sugar residue of N-acetylgalactosamine and N-acetylglucosamine which is a derivative of galactose and glucose by the order of intensity from weak to strong in the parotid, sublingual and submandibular glands. The present results provide the first time data on the anatomical structure and mucopolysaccharides type produced by major salivary glands of Sunda porcupines.

Keywords: Sunda porcupine, major salivary gland, anatomical structure, mucopolysaccharides

1. Introduction

The Sunda porcupine (\textit{Hystric javanica}) is one of the rodent species endemic to Indonesia. Although the conservation status of Sunda porcupine is the least concern, their populations in the wild tend to dramatically decrease due to high interest of human consumption. Moreover, there is lack information on the anatomical structure of their organ systems. The Sunda porcupine has a distinct gastrointestinal system. Even the histological structure of pancreatic tissues of Sunda porcupine similar to the other mammalian species \cite{1}, its contains four types of major pancreatic endocrine cells with approximately similar distribution patterns to the other rodents, except for abundant glucagon cells in the peripheral area of the islets of Langerhans \cite{2}.
Histochemistry can be defined as the chemistry of tissue components and its relation to tissue morphology. In histochemical study, lectins have extensively been used as probes in studying the cell surface interaction and carbohydrate composition in many tissues because lectins, naturally polypeptides, can bind specifically to carbohydrate residues in terms of glycoconjugates [3]. Many authors have focused on the importance of glycoconjugates in salivary glands of mammalian species and correlated them with body functions such as, transporting of macromolecules for digestive efficiency, preventing proteolytic damage on epithelia, and defending against bacteria [4, 5].

Anatomical structures and types of mucopolysaccharides produced by the major salivary glands of Sunda porcupine, however, are not available. Therefore, the study was conducted with conventional staining for histological analysis and lectin histochemical methods for detecting sugar residues in the glycoconjugates of major salivary gland.

2. Methods

Four major salivary glands of adult Sunda porcupines, Hystric javanica, about 67 cm in length, were purchased from a merchant in Tawangmangu, Central Java, Indonesia were used as samples. Salivary gland tissues of *Hystriz javanica* were fixed for 24 hours in Bouin’s solution, dehydrated in ethanol, cleared in xylene, and embedded in paraffin.

Tissue samples of major salivary glands (parotid, submandibular and sublingual glands) were processed for paraffin method, cut serially in 4–5 μm thicknesses and stained by hematoxylin and eosin (HE) for conventional histological evaluation. Alcian Blue-Periodic Acid Schiff (AB-PAS) and lectin histochemistry for *saphora japonica* agglutinin (SJA) and wheat germ agglutinin (WGA) were applied for further analysis of sugar residues in the glycoconjugates of major salivary gland. Sections were examined with a conventional light microscope, and photomicrographs were taken with Optilab digital camera.

3. Results and Discussion

The parotid gland was found in the preauricular region and along the posterior surface of the mandible, while the submandibular and sublingual glands were located on the floor of the mouth posterior to each mandibular canine. The parotid gland is divided into two lobules, each composed by different types of acini in separated lobes.
Figure 1. Alcian Blue-Periodic Acid Schiff (AB-PAS) staining reaction in the submandibular, sublingual and parotid glands of Sunda porcupines (520x). The submandibular (A) and anterior lobe of parotid glands (B) positive with PAS. The sublingual (C) and posterior lobe of parotid gland (D) positive with AB. Stars and arrows indicated the acini and ducts of the glands.
Figure 1. Lectin histochemistry for *saphora japonica* agglutinin (SJA) and *wheat germ agglutinin* (WGA) in the major salivary glands of Sunda porcupine (520x). Lectin histochemistry method showed that SJA (A, B, C) and WGA (D, E, F) were detected in all major salivary glands of Sunda porcupine by the order of intensity from strong, medium and weak in the submandibular, sublingual and parotid glands, respectively. Stars and arrows indicated the acini and ducts of the glands.
Routine histologic examination of hematoxylin and eosin stained sections revealed that the submandibular and sublingual glands were located in close proximity, separated by thin fibrous connective tissue. HE staining showed that submandibular gland acini consist of serous cell-type and sublingual gland acini are covered by mucousmucous cell-type. Parotid gland looks unique because in the anterior lobe, the acini are dominated by serous cell-type, while the acini of posterior lobe are composed by mixed of serous and mucous cell-types. As a major salivary gland of the body, a submandibular, sublingual and parotid gland of different rodents shows a variety in the lobes and form of its secretory endpieces. In agreement with our finding in Sunda porcupine, the submandibular and sublingual secretory endpieces of rat [6] and European hamster [7] showed serous and seromucous cell-types, respectively. However, in contrast with other rodents which consist of 1 lobe with serous cell-type acini [6, 7], the parotid gland of Sunda porcupine consist of 2 lobes with serous cell-type in the anterior lobe and seromucous cell-type in the posterior lobe.

In the present study, the three major salivary glands of Sunda porcupine have complete duct system comprising intercalated, striated and excretory ducts. Similar results were found in the rodents [6, 7]. The acini of submandibular gland contain neutral mucopolysaccharides, sublingual glands contain acid mucopolysaccharides and the parotid gland contains acid and neutral mucopolysaccharides according to the AB-PAS staining method. The acidic mucopolysaccharides are thought to contain terminal sialic acid residues [8] and neutral mucopolysaccharides compose of free aldehyde groups within the monosaccharide units [9]. Predominant glycoconjugates with terminal sialic acid in serous cells may coat the mucosal surface so as to provide an environment designed to preserve hydration [10] and to protect the cell from pathogenic organisms [11, 12].

The identification of sugar residues was improved by using lectin histochemistry in comparison with conventional histochemistry. Lectin histochemistry method showed that SIA and WGA were detected in all major salivary glands of Sunda porcupine by the order of intensity from weak to strong in the parotid, sublingual and submandibular glands. Lectin staining using SIA indicates that acini in salivary glands of Sunda porcupine contain sugar residue of N-acetylgalactosamine [13]. Lectin staining using WGA indicates that acini in salivary glands of Sunda porcupine contain sugar residue of N-acetylgalactosamine which is a derivative of glucose [14].

4. Conclusion

The present results provide the first time data on the anatomical structure and mucopolysaccharides type produced by major salivary glands of Sunda porcupines.

Acknowledgment

This study was fully supported by the Grant for Scientific Research (PUPT UGM 2016) from the Directorate General of Higher Education (DIKTI). Ministry of Research, Technology and Higher Education of Indonesia with contract number 112/LPPM UGM/2016.

References

