Community Empowerment and Tropical Animal Industry

This publication is issued as the Proceedings of the Fifth International Seminar on Tropical Animal Production held in Yogyakarta, Indonesia October 19-22, 2010.

Published by:
Faculty of Animal Science
Universitas Gadjah Mada
Jl. Fauna 3, Bulaksumur
Yogyakarta, Indonesia 55281
www.fapet.ugm.ac.id

ISBN: 978-979-1215-21-3

© Faculty of Animal Science, Universitas Gadjah Mada
No part of this publication may be reproduced or transmitted in any forms or by any means, electronic or mechanical, now known or heretofore invented, without permission in writing form the publisher.
Editor-in-Chief

Krishna Agung Santosa
(Universitas Gadjah Mada, Indonesia)

Editorial Board

Ali Wibowo
Budi Gunarto
Dale R. ZoBell
Egil Robert Ørskov
Endang Sulastri
I Gede Suparta Budisatria
Mogens Lund
Ryo Akashi
Soeparno
Subur Priyono Sasmito Budhi
Tohru Suzuki
Widodo
Yanin Opatpananakit
(Universitas Gadjah Mada, Indonesia)
(Universitas Gadjah Mada, Indonesia)
(Utah State University, USA)
(Macaulay Institute, United Kingdom)
(Universitas Gadjah Mada, Indonesia)
(Universitas Gadjah Mada, Indonesia)
(University of Copenhagen, Denmark)
(University of Miyazaki, Japan)
(Universitas Gadjah Mada, Indonesia)
(Universitas Gadjah Mada, Indonesia)
(Gifu University, Japan)
(Universitas Gadjah Mada, Indonesia)
(Maejo University, Thailand)

Editorial Staff

Dyah Woro Hastuti
Wirasto
Wisnu Widiarto
PREFACE

The Faculty of Animal Science, Universitas Gadjah Mada, is pleased to have The 5th International Seminar on Tropical Animal Production, held at our campus in Yogyakarta, on October 19-22, 2010. The previous seminar has been successes in discussing various issues at that time. Agriculture is the mainstay of the people of most tropical countries, where billion of people live. Within agriculture, a high priority is placed on animal rearing, since farm animals play important roles in the economies of the countries. The present seminar on ‘Community Empowerment and Tropical Animal Industry’ follows on in a series on tropical animal production.

The conference was aimed to gather educators, academics, researchers, industry practitioners, representatives of professional industry associations and non-government organizations in the field of animal science, to discuss issues and concerns confronting the various stakeholders in responding to the community empowerment and tropical animal industry. The conference further aimed to provide an interdisciplinary forum to facilitate the exchange of information through research and networking amongst the conference participants to foster collaborative research and academic exchanges.

The conference featured more than 200 panel, paper and poster presentations, and attendees, by animal science academics and practitioners from more than 20 countries. All the full papers and abstracts in these proceedings have been subjected to a double blind refereeing process coordinated by selected academics. The success of an international seminar with published proceedings depends on the collective team efforts of many people. We owe a significant debt of gratitude to many individuals. We wish to take this opportunity to thank these individuals who have contributed to the success of this conference. First, we would like to thank the paper and panel presenters as well as the conference session chairs for their contribution of expertise, time and efforts. We would also like to extend special thanks to the Paper Reviewers and Editors who have spared their precious time and efforts to review and edit the papers. The names of the Paper Editors are listed on the following page. The review and editing process has been a complex one given the fact that English is not the native language of many of the delegates who submitted papers for this seminar. With a number of papers it has been necessary to focus, at times, more upon intent and meaning than grammatical correctness.

We also commend the hard work done by the conference steering and organizing committees composed of the academic, administrative staff and students of the Faculty of Animal Science, Universitas Gadjah Mada.

Prof. Dr. Krishna Agung Santosa
Editor in Chief
REPORT OF ORGANIZING COMMITTEE

Good Day,
His excellency, Minister of Agriculture, Republic of Indonesia
The honourable Rector of Universitas Gadjah Mada,
Distinguish guests, participants, ladies and gentlemen,

On behalf of the organizing committee, I would like to extend our warmest welcome all supporters, presenters, and participants to the Fifth International Seminar on Tropical Animal Production 2010 in Yogyakarta, Indonesia, and indeed it is a great pleasure to see you all in our campus of Universitas Gadjah Mada.

This is a very special international event that held by Faculty of Animal Science, Universitas Gadjah Mada, Indonesia. The International Seminar on Tropical Animal Production (ISTAP) is conducted every four years. The first, second, third and fourth were conducted in 1994, 1998, 2002, and 2006, respectively. The theme of the 5th ISTAP 2010 is “Community Empowerment and Tropical Animal Industry”.

This forum is attended by more than 200 delegates representing 18 countries (Australia, Denmark, India, Iran, Japan, Kuwait, Malaysia, Pakistan, The Netherlands, The Philippines, Nepal, Sri Lanka, Nigeria, Thailand, Timor Leste, United Kingdom, USA, and Indonesia. There were over 170 abstracts submissions and 150 papers were accepted and will be presented at the forum. We are confident that the 5th ISTAP will be an excellent opportunity for all participants to share and learn from each other.

We hope that this ISTAP will be a success and that your stay in Indonesia will be a pleasant one.

I would like to express my sincere appreciation to the keynote speaker His excellency Ir. Suswono, MMA, Minister of Agriculture, Republic of Indonesia, and the invited speakers, Prof. Dr. Dale R. ZoBell, Prof. Dr. E.R. Orskov, Prof. Dr. Mogens Lund, Dr. Henning Otte Hansen, Ms. Fokje Steenstra, Mr. Vinod Ahuja, Dr. Yanin Opatpanakit, Prof Dr. Ryo Akashi, Prof. Dr. Michio Muguruma, Prof. Dr. Tohru Suzuki and Dr. Ferry Purnama.

Furthermore, my great thanks go to the sponsors of the conference, i.e. Toyota Nasmoco Mlati, Bank Indonesia, Bank Negara Indonesia, Bank Rakyat Indonesia Syariah, PT. Jackson Niagatama, PT. Peksi Guna Raharja, CV. Restu Bumi, Livestockreview.com, Kedai Roti Ola, Setia Farm, and Mr. Syahrul Bosang.

I would also like to acknowledge the support in the organization of the conference, Abad Entertainment and CV. Prima Katalisindo. Similarly, I also express my sincere gratitude for the hard work and dedication displayed by our paper reviewers, editors, committee and students of Universitas Gadjah Mada.

Again, we would like to welcome you all to the Fifth ISTAP for Participants, Delegates, and Special Guests in Yogyakarta, Indonesia

Thank you.

Dr. Budi Gunotoro
Chairman
WELCOME ADDRESS
DEAN OF FACULTY OF ANIMAL SCIENCE, UNIVERSITAS GADJAH MADA

Assalamu’alaikum warahmatullahi wabarakaatuh,

Honorable the Minister of Agriculture, Republic of Indonesia.
Your excellency Rector of Universitas Gadjah Mada
Distinguish guests, ladies and gentlemen

Let us thank full God almighty, that because of his amazing grace, we are all able to meet together at this Internationnal Seminar. On behalf of the Faculty of Animal Science, Universitas Gadjah Mada, it is my great privilege and pleasure to have you in Universitas Gadjah Mada.

Faculty of Animal Science, one among of 18 faculties in UGM, has been recognized as the prime educational institution in Indonesia, providing teaching, research and extension programs in science and animal industry including animal nutrition, animal production, technology of animal products and livestock social economics.

This is the fifth International Seminar on Tropical Animal Production (5th ISTAP), and the like the first until the fourth ISTAP, is the agenda of own faculty to be conducted once after every four years. The aim of this respective will contemplate in-depth community empowerment and animal industry problem in the tropical developing countries. The big problem which are constituting a challenge in tropical developing countries, particularly in Indonesia, among other things are the economic transformation and the trend of economic globality.

Finally, on behalf of the Faculty, I extend my sincere gratitude to honorables Minister of Agriculture the Republic of Indonesia, for your kind and generosity to include this event on your busy time schedule and be with us to give keynote speech and talk policy matters. We have proud and full of honourable to have invited speakers from all around the world as well as all participants derived from many universities, research institutes, related governmental offices and industries in Indonesia. Four-day conference hopefully would yield valuable solution and discussion in livestock production with holistic management of local resources could be successfully. By this opportunity, I would like to thank all parties and members of both Steering and Organizing Committees, who have devoted their time to make this seminar success. Allow me for this event, to request Prof. Dr. Sudjarwadi to officially open this seminar. Thank you.

Wassalamu’alaikum warahmatullaahi wabarakaatuh.

Prof. Dr. Tri Yuwanta
Dean
OPENING REMARKS
RECTOR OF UNIVERSITAS GADJAH MADA

Assalaamu’alaikum warahmatullaahi wabarakaatuh

The honorable Ministry of Agriculture Republic of Indonesia
Distinguished Guests, Participants of the seminar, and Ladies and Gentlemen.

It is my pleasure to welcome all of you to the campus of Universitas Gadjah Mada to attend the 5th international Seminar on Tropical Animal Production. This seminar is more or less a response to the recommendation forwarded at the 4th International Seminar on Tropical Animal Production held in 2006.

Ladies and Gentlemen,

Universitas Gadjah Mada on behalf of Faculty of Animal Science is very delighted to host this fourth yearly seminar. First of all, I would like to thank and express my appreciation to the Dean of Faculty of Animal Science and all members of the committee of the seminar who have been working very hard to make the seminar successful.

The large numbers of representative we have here from all around the world indicate that the interest generated in animal production is real and trying to affect the resources of rich and poor nations.

Secondly, on this significant occasion I would like to express as well sincere gratitude to the Minister of Agriculture, Ir. Suswono, MMA for your special speech.

The theme of fifth International Seminar on Tropical Animal Production is “Community Empowerment and Tropical Animal Industry”. Since animal production in the tropics has been developed rapidly in order to provide high quality food, however it still very much depends on science, technology, and resources from developed countries. Overseas depending resources make agriculture development difficult to be sustainable. It is urgent to concern and take responsibility for sustainable development of agriculture which integrates three main goals: environmental health, economic profitability and social economic equity.

This seminar will be hopefully being continued as a forum of researchers, specialists in animal science and technology for tropical countries. In our constant effort to improve the food production and technology for tropical countries, we very much depend on cooperative efforts of scientists who have already improved livestock production in the region.

Finally, I do hope you enjoy very much this seminar and your stay in Yogyakarta. Thank you very much.

Wassalaamun’alaikum warahmatullaahi wabarakaatuh.

Prof. Dr. Sudiarwadi
Rector
LIST OF CONTENTS

PREFACE ... iii
REPORT FROM ORGANIZING COMMITTEE ... iv
WELCOME ADDRESS ... v
OPENING REMARKS .. vi
LIST OF CONTENTS .. vii

PART I
PLENARY SESSION

1. Asian livestock: Opportunities, challenges and the response
 Vinoj Ahuja .. 1 – 5

2. Cattle extension programs and research for tropical agriculture
 Dale R. ZoBell .. 6 – 10

3. The revolving fund system in sustainable community development
 Grant Davidson, and E.R. Ørskov .. 11 – 18

4. Intensification of smallholder livestock production: Is it sustainable?
 Hendrik M.J. Udo and Fokje Steenstra .. 19 – 26

5. The development of Danish agriculture and agribusiness: Lessons to be learned in a
 global perspective
 Henning Otte Hansen and Mogens Lund .. 27 – 35

6. Genome research of gut bacteria, how to analyze and how to apply?
 Tohru Suzuki, Kouta Sakaguchi, and Kazumasa Yasui 36 – 40

7. Animal production in Thailand: Challenges and potentials in global market
 Yanin Opatpatanakit .. 41 – 49

8. Improvement of forage quality by means of molecular breeding in tropical grasses
 Takahiro Gondo, Genki Ishigaki, Yasuyo Himuro, Nafiatul Umami and Ryo Akashi 50 – 56

9. Advance research in function and healthy food from animal products – antihypertensive
 peptides derived from meat protein hydrolysates
 Michio Muguruma, Jamhari, Yuny Erwanto, and Satoshi Kawahara 57 – 63

SUPPORTING PAPERS

Animal Feed and Nutrition

1. Exploration of pathogenic and non-Pathogenic Fungi on Alfalfa (Medicago sativa L)
 Turrini Yudirini, Sumarsono, and Didik Wisnu Widjajanto 64 - 67

2. Organic fertilizer application on performance and production of king grass in acid soil
 Sumarsono, Syafui Anwar, Didik Wisnu Widjajanto, and Susilo Budiyanto 68 - 71
3. The effect of using earthworm (*Lumbricus rubellus*) meal additives as growth promoters on protein digestibility and performance of intestinal villi
 Hardi Julendra, Zuprizal, and Supadmo .. 72 – 78

4. Fermentation of Jatropha kernel cake (*Jatropha curcas L.*) using varieties of fungi on its chemical compositions, concentration of phorbol ester, and digestibility
 Fatmawati, Hari Hartadi, and R. Djoko Soetrisno .. 79 – 88

5. Effect of protected crude palm oil on rumen microbial activities and methane production
 Nafly C. Tiven, Lies Mira Yusiatu, Rusman, and Umar Santoso 89 – 94

6. Fermentation parameters and total gas production of some rumen protected fat-protein
 Lilis Hartati, Ali Agus, Budi Prasetyo Widyobroto, Lies Mira Yusiatu 95 - 98

7. Dietary energy utilization of Local Sheep fed complete feed consisting of agricultural and agroindustrial by-products

8. Reduction of phytic acid and aflatoxin content of rice bran through fermentation *Rhizopus* spp. Combined with deproteinated-chitin waste addition
 Ahmad Sofyan, Ema Damayanti and Hardi Julendra .. 104 – 108

9. Implementation of fermented rice bran as flavor enhancer additive and its effect on feed utilization and cattle performance
 L. Istiyomah, A. Febrisiantos, A. Sofyan, and E. Damayanti 109 – 114

10. The use of *kume* grass (sorghum plumosum var. Timorese) bioconverted with white-rot fungi (*Pleurotus ostreatus*) fed on Local Goat in East Nusa Tenggara
 S. Ghunu, T.O. Dumi Dato, M.A. Hilakore, J.J.A. Ratuwaloe, and Y.L. Henuk ... 115 – 117

11. The use of local-fodder based supplement and agricultural by-product for cattle
 Henuk .. 118 – 120

12. The use of *kume* grass (sorghum plumosum var. timorese) to substitute king grass
 (pennisetum purpureophyodes) fed on Bali Cattle in East Nusa Tenggara
 T.O. Dami Dato, S. Ghunu, M.A. Hilakore, J.J.A. Ratuwaloe, and Y.L. Henuk ... 121 – 123

13. The use of zeolite in low protein diet added with critical amino acids to reduce pollution
 Candra Elia Puspasari, Wihandoyo, and Supadmo ... 124 – 148

14. Effects of substitution of Elephant grass by corn waste and coffee pulp as basal diet on nutrient intake and digestibility in young male Ongole crossbreed cattle Dicky
 Pamungkas, Ristianto Utomo, Nono Ngadyono, and Muhammad Winugroho 129 – 134

15. Effect of lactic acid bacteria inoculants applications to the quality and chemical composition silage waste of carrot plant (*Daucus carota*)
 Badat Muwakhid .. 135 – 140

16. The content of phytoestrogen on legume plants
 Batsba M.W. Tiro, Suwijyo Pramono, Hari Hartadi, Djoko Soetrisno, and
 Endang Baliarti ... 141 - 145

17. Chemical composition and digestibility (*in vitro*) of cocoa pod husk (*Theobroma cacao* L.) Fermented with *Aspergillus niger*
 F.F. Munier, H. Hartadi, and I.G.S. Budisatria ... 146 – 154
18. Intake and digestibility of feed in lamb of Sumatera composite breed when the commercial concentrate diet were substituted by gliciridia dan rice bran
Dwi Yulistiani and Wisri Puastuti .. 155 – 158

19. Fermentative gas production of different feeds collected during wet and dry seasons when incubated with rumen fluid from Rusa Timor (Cervus timorensis)
M. S. Arifuddin, R. Utomo, H. Hartadi, and Damya .. 159 – 164

20. Effect of fed complete feed plus on quality and milk production of dairy cow

21. In Vitro gas production of fermented cacao pod (Theobroma Cacao) added with celluolytic inoculum from cattle rumen fluid
Chusnul Hanim, L.M. Yuswati, and V.P. Budyastuti .. 171 – 176

22. Hibiscus Schizopetalus as saponin source, reduce protozoa number and increase microbial protein synthesis on in vitro sheep rumen fermentation
Asih Kurniawati and Nafiamul Umami ... 177 – 182

23. The effect of gliciridia or mixture of rice bran and copra meal supplementation on feed intake, digestibility and live weight gain of early weaned Bali Calves fed A, Mulato grass
Masreyo, Muhammad Ilyas Mumu, and Yohan Rusiyanto .. 183 – 188

24. A comparison of feeding management practices of beef cattle smallholders in lowland and upland sites in East Java

25. The effect of ketepeng cina leaf (cassia alata l), as a source of anthraquinone, methanogenesis inhibitor agent on rumen microbial protein synthesis for beef cattle in Sedo Rukun farmer group
Lies Mira Yuswati, Zaenal Bachruridin, Chusnul Hanim, and Lila Indriana ... 196 – 200

26. The effects of feed restriction severity on compensatory growth of goat kids in Bushehr Province, Iran
Mahmoud Dashtizadeh, Azizollah Kamalzadeh, Mohammad Hadi Sadeghi, Amir Arsalan Kamali, and Abdulmehdi Kabirifard ... 201 – 207

27. Fermentation quality of king grass (Pennisetum Purpureocephalis) ensiled with epiphytic lactic acid bacteria and tannin of acacia
B. Santoso, B. Tj. Hariadi, H. Manik and H. Abubakar .. 208 - 214

28. The effect of methionine on glutathion production to eliminate aflatoxin B1 toxicity
Yunianta, Ali Agus, Nuryono, and Zuprizal .. 215 – 220

29. Rice bran fermentation tecnology and soya bean oil suplementation of transfer protection fatty acid omega-3 of unsaturated fatty acids content of milk dairy cow
Sudibya ... 221 - 226

30. Growth performance and blood profile of african cat fish fed sweet potato (ipomoea batatas) leaf meal
Olaniyi Christianah Oludayo ... 227 – 232

31. Application of complete feed formulated from agriculture by-products with undergraded protein supplementation on beef cattle productivity
Bambang Suhartanto, B.P. Widyobroto, I.G.S. Budisatria, Kustantinah, and R. Utomo ... 233- 238
32. The effect of green tea extract (Camellia sinensis) supplementation on blood profiles and lipid oxidation in broilers fed high pufa diet
Isti Astuti, Supadmo, Sugeng Riyanto, Supriyadi .. 239 - 242

33. The role of lactic acid bacteria on silage duration process and rumen content silage quality
Isnandar, R. Utomo, S. Chuzaemi, E. Sutariningsih, and L.M. Yusiat .. 243 – 249

34. Replacing enzose by corn grains: impact on nutrients utilization and weight gain in growing buffalo calves
M. Nisa, M. Aasif Shahzad, and M. Sarwar ... 250 – 256

35. Nutrients utilization, nitrogen dynamics and weight gain in growing buffalo calves fed graded replacement of urea by corn steep liquor
M. Aasif Shahzad, M. Nisa, and M. Sarwar .. 257 – 261

36. Production and nutritive value of mulberry hay as potential feed supplement for ruminants
Z.A. Jelan and A.R. Alimon .. 262 – 265

37. The retention of copper in sheep fed palm kernel cake supplemented with molybdenum, molybdenum plus sulphur and zinc
A.R. Alimon, R.A. Al-kirshi and Z.A. Jelan .. 266 - 268

38. Utilization of complete feed based on fermented rice straw for Australian commercial cross steer on carcass and meat quality
Bambang Suwignyo, Ristianto Utomo, Yuny Erwanto and Ali Agus 269 – 273

39. The measurement of rate of passage using different pairs of alkanes as markers for sheep fed hay or fresh grass
A. Kustantinah, R.W. Mayes, and E.R. Oslov .. 274 – 281

40. Aflatoxin excretion in the milk of tropical dairy cow fed contaminated aflatoxin bl in the diet

Poultry Production

1. The interaction of dietary lysine and temperature on egg laying performance of broiler breeders
Abdulameer Al-Saffar .. 286 – 290

2. Digestible methionine requirement for performance and carcass yield of broiler finisher
N.G.A. Mulyantini .. 291 – 295

3. Resource use efficiency in poultry production in Bureti District, Kenya

4. In vitro evaluation of phytoegenic potential of seed from mango (Mangifera indica), moringa (Moringa oleifera) and sweet apple (Annona squamosa) for poultry
Rusdi, Asrian Hasanuddin, Rosmiati Arief .. 303 – 307

5. The effect of adding vitamin C and E in native chicken semen extender stored at temperature 4 °c on semen quality and egg fertility
Widya Asmarawati, Ismaya, and Tri Yuwanta .. 308 – 313
6. The effects of single lactic acid bacteria probiotic supplementation on intestinal mucosa profile and immune response in broilers
 Bambang Aryadi and Sri Harimurti ...
 314 – 319

7. Identification of single nucleotide polymorphism of gen insuline-like growth factor binding protein 2 on growth of native chicken
 Sri Sudaryati, Jafendi HP Siddalog, Wihandoyo, and Wayan Tunas Artama ...
 320 - 324

8. Cassava leaf meal inclusion in palm kernel meal diet could improve egg yolk color in post-molted native laying hens
 Adrizal, S. Fakhri, R. Murni, Yatno, T. Maranata, S. Asby, Yusrizal, and C. R. Angel ...
 325 – 331

9. Egg production responses of laying hens to feed medicinal herbs after peak of production
 M. Luij Jadi, E.H.A. Juwaningsih, S.T. Temu, S.Y.F.G. Dillak, and Y.L. Henuk ...
 332 - 334

10. Systems of poultry husbandry
 C.A. Bailey, S.Y.F.G. Dillak, S. Semбирing and Y.L. Henuk ...
 335 – 341

11. Ovulation and oviposition patterns in quail (Coturnix Coturnix Japonica)
 S.Y.F.G. Dillak, A. Pigawahi, and Y.L. Henuk ...
 342 – 345

12. Evaluation of tofu waste treated with fermentation and enzyme supplementation in broiler chickens
 B. Sundu, Baharuddin and M. Basri ...
 346 – 349

13. Influence of grit on performance of local chicken under intensive management system
 Jublin Franzina Bale-Therik, Cyske Sabuna ...
 350 - 353

14. The growth and productivity of selected kampung chicken
 Heti Resnawati and Tike Sartika ...
 354 – 357

15. Effect of divergent selection body weight to egg production during the six generation and GH gene polymorphism quail (Coturnix coturnix japonica)
 Ning Setiati, J.H.P. Sidadolog, T. Hartatik and T. Yuwanta ...
 358 – 363

16. Feeding management evaluation of duck farmer group in Brebes
 Heru Sasonkg ...
 364 – 367

17. Heterosis and combining ability for body weight and feed conversion in four genetic groups of native chicken
 Franky M.S. Telupere ...
 368 – 373

18. The implementation of forced molting technology on rejected laying hens for the people discharged from employment (a case study at Duwet Village, Klaten, Indonesia)
 Ali Mursyid Wahyu Mulyono, Sri Hartati, Ahimsa Kandi Sariri, and Engkus Ainiul Yakin ...
 374 – 379

19. Growth performance of Maloe birds (Macrocephalon maleo) by Means of feeding control in the captivity
 Hafsa, Tri Yuwanta, and Kustono ...
 380 - 384

20. Egg production and quality of Kedu chicken based on plumage color that reared intensively
 Ismoyowati, Dadang Mulyadi Saleh, Rosidi ...
 385 – 390

21. Effect of indigenous lactic acid bacteria probiotics on broiler performance
 Sri Harimurti, Nasroedin, Endang Sutriswati Rahayu, Kurniasih ...
 391 - 394
22. Effects of zinc supplementation on laying performance of hens
O.M.O. Idowu .. 395 – 397

23. Effect of different level of rice polishing in combination with phytase and acidifier on performance and shell quality in layer chickens
Bayu Sesarahardian, Osfar Sjofjan and Eko Widodo ... 398 - 402

PART II

Livestock Production

1. Exterior characteristics of Kejobong goats kept by farmers
I Gede Suparta Budisatria, Panjono, Ali Agus, Lies Mira Yusiati, and Sumadi 403 – 410

2. The effect of goat-sharing system on the performance of farmer groups raising etawah cross bred goats – a case study in ‘Sukorejo’, Girikerto, Turi, Sleman
Yuni Suranindyah, Kustantinah, and E. R. Orskov ... 411 – 414

3. Growth and carcass production of Ongole grade cattle and Simmental Ongole crossbred cattle growing in a feedlot system
Mateus da Cruz de Carvalho, Nono Ngadyono, and Soeparno 415 - 422

4. Available herbage sustainability under soil and water conservation for development of small ruminants
Sutarno, Sumarsono, Widiyati Slamet, Didik Wisnu Widjajanto 423 – 426

5. A study on some aspects of equine husbandry in the Punjab-Pakistan
Arshad Iqbal, Asif Hameed, M.Younas, Bakht B. Khan and S.A. Bhatti 427 – 432

6. Feeding strategies to increase growth of early weaned Bali calves in East Java

7. Response of brahman crossbred cows and their calves kept under semi-intensive and fed them on local-fodder supplement In east Sumba Regency, East Nusa Tenggara Province

8. The relationship between heart-chest girth, body length and shoulder height, and liveweight in Indonesian goats
Asmuddin Natsir, Mawardi A. Asja, Nasyrullah, Yusmasari, A. Nurhayu, Peter Murray, and Roy Murray-Prior ... 441 – 445

9. Growth performance of Ongole grade (Peranakan Ongole) cattle in Indonesia
Budi Haryanto and Dicky Pamungkas ... 446 - 451

10. Growth of carcass and carcass component of different slaughter weight of local ram
A.E. Manu, M.M. Kleden, S.A. Adjam, J.J.A. Ratuwaloe and Y.L. Henuk 452 – 454

11. Postpartum productivity of Simmental-Ongole crossed cows of the first generation compared to Ongole crossed cows kept by farmers
E. Bialiarti, W.T.H.M. Christoffor, and Soenardi ... 455 - 459
12. The effect of supplementation of different lysine sources on the performance of weaned pigs from 4 to 10 weeks of age
Risel Diana H. Likadja ... 460 – 463
13. Effect of fiber source on the performance of weaned pigs from 4 to 10 weeks of age
Johannis Ly and Risel D.H. Likadja .. 464 – 467
14. Influence the improvement of cattle feedlot production system to increase the welfare of feedlot farmers group in Indonesia through the implementation of integrated sustainability farming system
Joko Riyanto, Susi Dwi Widyawati, and Wara Pratitias 468 – 473
15. Breeding bos taurus d’alton cattle in eastern Indonesia: cattle growth
Totok B. Julianto, Tanda Panjaitan, Geoffrey Fordyce, and Dennis Popp 474 – 477
16. Breeding Bos Javanicus d’Alton cattle in eastern Indonesia cattle control, diets, draught use and feeding
Tanda Panjaitan, Geoffrey Fordyce, Dennis Popp 478 – 482
17. Breeding Bos javanicus d’Alton cattle in eastern Indonesia: Monitoring village cattle
Dennis Popp, Tanda Panjaitan, Dahlanuddin, and Geoffrey Fordyce 483 – 487
18. Application of non linear models in estimating growth curves of body weight and sizes of Holstein-Friesian female cattle
Nia Kurniawan, and Anneke Anggraeni 488 – 496
20. Diversity on the exterior performance of crossbred cattle kept by farmers in central java
21. Alternative control for endoparasites infection in goats by feeding fresh matured and immature leaves of terminalia catappa
Mohd Azrul Lokman, and Mohd Effendy Abd. Wahid 509 – 514
22. Growth of nine month old male buffalo calves as affected by different crude protein and energy concentrations
M. Sarwar, M. A. Shahzad, N.A. Tauqir, and M. Nisa 515 – 520
23. Performance of lactating bufferoes as affected by varying concentrations of essential amino acids

Animal Physiology, Reproduction, and Genetics

1. Seasonal investigation of serum magnesium concentration in native cattle at Western Azerbaijan Province, Iran
M.R. Vailou and A.R. Rotfi ... 527 – 530
2. Detection of Toxoplasma gondii based on sequence r529 and sag1 gene probe
Asmarani Kusumawati, Harto Widodo, Nafratilova Septiana, and Sri Hartati .. 531 – 534
3. Reproductive performance of dairy cows in Yogyakarta Province based on balanced ration given
Ahmad Pramono, Kustono, and hari Hartadi 535 – 540
4. Breeding programme development of Bali cattle at P3Bali
Andoyo Supriyanto, Luqman Hakim, Suyadi, and Ismudiono .. 541 - 546

5. Friesian holstein imported cows: physiological character and blood composition based on altitude difference
Ratna Dewi Mundingsari, Adiarto, and Soenarjo Keman ... 547 - 551

6. Breeding value of Friesian Holstein bulls in PT. Naksara Kejora Rowoseneng, Temanggung, Central Java
Hasyim Mulyadi, Indrawati Mei P., and RR. Mahardika N.P. ... 552 - 555

7. Genetic potency of weaning weight of boerawa F1, backcross 1, and backcross 2 does at breeding centre, Tanggamus Regency, Lampung Province
Sulastri .. 556 - 560

8. Distribution of population and production estimate of some cattle breeds at Yogyakarta Province, Indonesia
Sumadi, Tety Hartatik, and Sulastri ... 561 - 564

9. In vitro fresh sperm preparation for maintaining sperm viability at storage temperature of 14°C using tannin supplementation of lamtoro leaves
Mirajuddin, Kustono, Ismaya, and A. Budiyanto ... 565 - 571

10. Phenotype and phylogenetic studies of local cattle in pacitan district, East Java, Indonesia
Muhammad Cahyadi, and Tety Hartatik .. 572 - 577

11. The exploration of genetic characteristics on Madura cattle
T. Hartatik, T. S. M. Widi, Ismaya, D.T. Widayati and E. Baliarti ... 578 - 584

12. Breeding Bos javanicus d’Alton cattle in Eastern Indonesia: Cattle reproduction
Geoffrey Fordyce, Tanda Panjaftan, Totok B. Julianto, Eliza Kurtz, and Dennis Poppi 585 - 589

13. Improvement quality of Bligon goat sperm trough separation by albumen
Sigit Bintara, Soenarjo Keman, Sumadi, and Ali Agus .. 590 - 594

14. Correlation between plasma progesterone concentrations and fecal Progestin during the estrus cycle of Kedah Kelantan cows

15. Effect of PGF2α, or CIDR on ovarian follicular development during estrous cycle in goats
Muhammad Modu Bukar, Rosmina Yusoff, Abd Wahid Harun, Gurmeet Kaur Dhalival, Mohammed Ariff Omar, Nur Husien Yimer, Mohd Azam Khan Goriman Khan .. 599 - 602

16. The use of frozen semen of Holstein-Friesian bulls with the BB genotype of the kappa casein gene in Indonesia
A. Anggraeni, C. Sumantri, and E. Andreas ... 603 - 608

17. Effect of haylage made of kune grass standinghay fermented with liquid palm sugar and local chicken manure on semen quality and scrotum circumference of male local goat
Henderiana L.L. Belli and Nathan G.F. Katipan .. 609 - 613

18. The early identification of twinning trait genes on Indonesian local beef cattle
Aryogi, Endang Baliaerti, Sumadi, and Kustono .. 614 - 622
19. Effect of bulls on pregnancy rate of estrous synchronized Brangus cows
A. Malik, H. Wahid, Y. Rosmina, A. Kasim, and M. Sabri 623 – 626

20. Analysis of Butyrophilin gene polymorphism in buffalo population in Khouzestan Province by PCR-RFLP Technique
Beigi Nassiri, M. T. Mozafari, K. N. T. Hartatik, Fayazi, J. and Mirzadeh, K 627 – 630

Technology of Animal Products

1. The development of ripened cheese containing lactic acid bacteria: the effect on chemical composition, acid production and sensory value
Tridjoko Wisnu Murti 631 – 637

2. The restructured of local beef of low quality with different binders, fat emulsifiers and fortification with vitamin in beef burger
Setiyono and Soeparno 638 – 643

3. The using of extract rabbits stomachs in the making goat milk cheese ripened with Lactobacillus Acidophilus
Inda Dewata Sari, Nuriliyani and Indratiningisih 644 – 648

4. Effect of broiler age and extraction temperature on characteristic chicken feet skin gelatin
Muhammad Taufik, Subarjono Triatmojo, Yuny Erwanto, Umar Santoso 649 – 656

5. Quality changes of burger from vegetable, wheat flour, rice flour with fat emulsion during frozen storage

6. Polymerization of meat and Tempeh protein using transglutaminase and their potency as an antihypertency and antioxidant agent
Yuny Erwanto, Jamhari dan Rusman 663 – 670

7. The application of local dahlia tuber (Dahlia pinnata L.) as probiotics for improving viability of probiotics Bifidobacterium bifidum in yoghurt
Widodo, Nosa Septiana Anindita, Endang Wahyuni, and Indratiningisih 671 - 676

Extension, Community Development and Agribusiness

1. Elephant Camps and their impacts to community: Case study in Keud Chang, Chiang Mai Province, Thailand
Weerapon Thongma and Budi Guntoro 677 – 682

2. Soft technology innovation for farmer empowerment to bring about practice change in an agricultural r&d project: lesson learnt from Eastern Indonesia
Nurul Hilmiati, Elise van de Fliert, Medo Kote, Debora Kana Hau, Toni Basuki 683 – 690

3. The effects of dairy cattle ownership and farmers’ demography factors on the evacuation moving farmers’ behavior at Merapi volcano area (case study at Kaliadem Sub Village, Yogyakarta, Indonesia)
Siti Andarwati and F. Trisakti Haryadi 691 – 694
4. Farmers’ profile and exterior characteristic of female Moa Buffaloes in Moa Island, Maluku Province
 Justhinas Pipiana, Endang Baliarti, and I Gede Suparta Budisatria 695 – 701

5. Economic analysis of on-farm feeding strategies to increase post-weaning live weight gain of Bali calves
 Atien Priyanti, Simon Quigley, Marsetyo, Dicky Pamungkas, Dahluddin,
 Esnawan Budisantoso, and Dennis Poppi ... 702 – 708

6. The role of livestock service in order to cattle agribusiness development in regency of Kupang
 Maurinus Wilhelmus Gili Tibo .. 709 – 716

7. Factors with the purchase of meat by consumers in Makassar, Sulawesi
 Nasrullah, Yusmasari, A. Nurhayu, Asmuddin Natsir, Mawardi A. Asja, Roy
 Murray-Prior, and Peter Murray .. 717 – 724

8. Goat supply from Enrekang, South Sulawesi to East Kalimantan: a long and winding road
 Mawardi A. Asja, Asmuddin Natsir, Roy Murray-Prior, Peter Murray, Nasrullah,
 Yusmasari, and A. Nurhayu ... 725 – 732

9. Goat meat consumption in Makassar, Sulawesi: Important for religious and cultural ceremonies, but many consider it a health risk
 Roy Murray-Prior, Asmuddin Natsir, Mawardi A. Asja, Nasrullah, Yusmasari, A.
 Nurhayu, and Peter Murray ... 733 – 740

10. Marketing practices of smallholder beef cattle producers in east java

11. Empowerment of goat farming: Lessons learnt from the development of goat farming group of Peranakan Etawah Gumelar Banyumas
 Akhmad Sodiq .. 747 – 752

12. Performance of credit program to small dairy cattle development in Indonesia
 Rini Widiati .. 753 – 758

13. Analysis of demand of broiler meat in Central Java
 Nurdayati, Sudi Nurtini, Masyhuri, and Rini Widiati .. 759 – 762

14. Decision making model analysis of technology adoption: empirical study on milk pasteurization retailer behavior
 Januar Tri Sukarna, Suci Paramitasari Syahlani, and Ahmadi .. 763 – 766

15. An education management model based on cognitive learning for small dairy farmers in the tropics
 Viriya Munprasert, Phahol Sakkatat, Varaporn Punyaveadee, Siriporn
 Kiratikarnkul and Dumrong Leenanuruksa .. 767 – 770

16. Participation of women farmers on beef cattle farming management in Pandan Mulyo Group, Bantul, Yogyakarta
 Ida Wulandari, Budi Guntero, and Endang Sulasri .. 771 – 777

17. The sources of dairy cows and concentrate feed among the dairy farmers in Sleman Regency, Yogyakarta
 Endang Sulasri and Budi Guntero .. 778 – 780
1. The use of gewang tree (corypha elata roxb) as feed for livestock in the tropics
 Maritje A. Hilakore, U Ginting-Monthe, and Y.L. Henuk ... 785 – 789

2. Optimizing nutrition of commercial livestock for minimal negative impact on the environment through precision feed formulation
 Y.L. Henuk, S.Y.F.G. Dillak, S. Sembiring and C.A. Bailey ... 790 – 794

3. Performance and prospect of beef cattle development in Central Java
 W. Roessali, Masyhuri, Sudi Nurtini, dan D.H. Darwanto ... 795 – 801

4. Livestock husbandry in India: a blessing for poor
 Nizamuddin Khan, Anisur Rehman, Md. Asif Iqbal and Mohd. Sadiq Salaman 802 – 807

5. Brown midrib resistance (BMR) corn
 D. Soetrisno, M.H. Shane, C.M., Dschack, J.—S. Eun, and R.Z. Dale 808 – 814

INSTRUCTIONS TO AUTHORS

The Annual Report on Agricultural Development in South Asia is an international forum for the presentation of original research, policy analysis, and practitioner experience related to agricultural development in South Asia. This year’s report focuses on the theme of “Innovation and Transformation in Agriculture.”

The report includes a review of the key trends and challenges facing agricultural development in South Asia, as well as case studies of successful innovations and practices. It also highlights the role of science, technology, and policy in driving agricultural progress.

INSTRUCTIONS TO AUTHORS

The Annual Report on Agricultural Development in South Asia is an international forum for the presentation of original research, policy analysis, and practitioner experience related to agricultural development in South Asia. This year’s report focuses on the theme of “Innovation and Transformation in Agriculture.”

The report includes a review of the key trends and challenges facing agricultural development in South Asia, as well as case studies of successful innovations and practices. It also highlights the role of science, technology, and policy in driving agricultural progress.

INSTRUCTIONS TO AUTHORS

The Annual Report on Agricultural Development in South Asia is an international forum for the presentation of original research, policy analysis, and practitioner experience related to agricultural development in South Asia. This year’s report focuses on the theme of “Innovation and Transformation in Agriculture.”

The report includes a review of the key trends and challenges facing agricultural development in South Asia, as well as case studies of successful innovations and practices. It also highlights the role of science, technology, and policy in driving agricultural progress.

INSTRUCTIONS TO AUTHORS

The Annual Report on Agricultural Development in South Asia is an international forum for the presentation of original research, policy analysis, and practitioner experience related to agricultural development in South Asia. This year’s report focuses on the theme of “Innovation and Transformation in Agriculture.”

The report includes a review of the key trends and challenges facing agricultural development in South Asia, as well as case studies of successful innovations and practices. It also highlights the role of science, technology, and policy in driving agricultural progress.
Effect of broiler age and extraction temperature on characteristic chicken feet skin gelatin

Muhammad Taufik,* Suharjono Triatmojo,† Yuny Erwanto,† and Umar Santoso†

*Sekolah Tinggi Penyuluhan Pertanian (STPP) Gowa Ministry of Agriculture Republic of Indonesia; and †Faculty of Animal Science Universitas Gadjah Mada, Indonesia

ABSTRACT: Gelatin was prepared from chicken feet skin of Broiler. Yield, moisture, ash content, pH value, fat content, protein content, viscosity and gel strength of the chicken feet skin were evaluated. A completely randomize factorial design was used, with two levels of broiler age (30 and 40 day) and three levels of extraction temperature (45, 50 and 55°C). Results of the research showed influence of interaction of both treatments Broiler age and extraction temperature was not significant (P>0.05) upon the yield, gelatin moisture, pH value, fat content, protein content and gel strength, while it was significant (P<0.01) to viscosity. The average of gelatin characteristic made of chicken feet skin from this study were yield 15.498%, moisture 10.930%; ash content 0.249%; pH value 3.422; fat content 0.139%; protein content 93.521; viscosity 6.896 poise and gel strength 119.085 g/cm². The results indicated that chicken feet skin gelatin can be used as a substituted for commercial gelatin for food industry application.

Key words: gelatin, chicken feet skin, Broiler, age, extraction temperature

INTRODUCTION

Gelatin is a protein substance that can dissolve in water does not naturally occur in nature, but derived from the destruction of collagen through the process of secondary structures with various degrees of hydrolysis (Phillips and Williams, 2000). Collagen is a fibrous protein found in many connective tissues in the body of animals, such as bone, cartilage, skin and tendons (Pearson and Dutson, 1992).

Physical and chemical properties of gelatin was significantly affected by raw materials, animal age, type of collagen and method of manufacture (Ledward, 1986), tissue type, species (Gomes-Guillen et al., 2009), collagen characteristics and treatment process (temperature , time, and pH) (Johnson-Banks, 1990; Kolodziejska et al., 2008). Muyonga et al., (2004) suggests that collagen derived from fish skin of Nile perch (Lates niloticus) with the age difference to produce the proteins that are almost identical (20-22%), the content and amino acid composition was not significantly different, whereas the fat and mineral content of adult Nile perch fish was higher than that of young fish. Furthermore Dwi Wulandari (2006) argued that differences in the concentrations of acid and alkaline soaking process broiler feet skin with extraction temperature 45°C, showed no significant difference on yield, viscosity, fat content, ash content, pH, whereas the gel strength and protein content showed significant differences.

Gelatin is generally made from waste generated from the cutting and processing of livestock, such as skin and bone. Based on data in 2007, production of gelatin in the whole world about 326 000 tones, with details of 46.0% was derived from pig skin, cow leather 29.4%, 23.1% came from the bone and 1.5% from other sources (GME, 2008). On the basis of these data, the production of gelatin derived from pig skin is very high. This is a problem particularly in Indonesia, due to the gelatin on the market 100% of it is imported gelatin, while the majority of Indonesian people embraced Moslem which forbids a food that comes from pigs.

Therefore, it is necessary to find alternative sources that can replace the pig skin gelatin. One of the most abundant source is from poultry by-product, namely the shank of broiler chickens. In Indonesia, in general, broiler feet has been used as food (e.g.: soup, rambak) or created as an accessory (e.g.: wallet, belts). While in the area of South Sulawesi in particular, broiler feet are still regarded as waste, the utilization is still limited as food and feed.
Potential of broiler chicken feet as a source of gelatin can be seen from the increasing number of chicken population in Indonesia. Data from the Directorate General of Animal Husbandry (2008) total population of broiler chickens in Indonesia in 2008 is approximately 1,075,884,785 heads. In addition, qualitative skin fresh broiler chicken feet contains 22% crude protein, fat 5.50%, ash 3.5%, water 64% and 3% other substances (Sriyanto, 1986). According to Cheng et al., (2009), collagen content of broiler feet that is extracted using acetic acid ranging from 516.6 ± 28.9 mg/g. Further as stated by Vittayanont and Benjakul (2005), Lin and Liu (2006), the collagen of chicken feet, including collagen type I, contains many amino acids glutamate (Glu), aspartate (Asp), hydroxyproline (Hyp) and proline (Pro) and has stability to high temperature. Thus, collagen from chicken feet may be used as a material suitable for biomaterials. Dwi Wulandari (2006) stated that the average value of broiler chicken feet skin gelatin characteristic obtained with various concentrations of the curing material, are 12.31% yield, gel strength of 136 g/cm², 7.51 poise viscosity, protein content 83.23 %, fat content 1.09%, 0.27% ash content, water content 6.75% and pH 4.5, there are 17 amino acids detected with glycine and hidroksiprolin quite high.

Based on the above description, the potential Broiler chicken feet skin should be studied as an alternative to gelatin pig skin and bones, as well as characteristics of the resulting gelatin.

MATERIALS AND METHODS

Gelatin production was conducted at the Laboratory of By-product Technology and Environment, Faculty of Animal Husbandry. Measurement of the characteristics of gelatin was done in the Laboratory Technology I, Faculty of Agricultural Technology and Laboratory of By-product Technology and Environment, Gadjah Mada University, Yogyakarta.

Material

Research materials used are skin feet of Hubbard broiler strain aged 30 and 40 days around 1500 pieces. This material was obtained in the form of pieces of chicken feet so the skin is still embedded in the bones. Weight ratio of chicken feet and foot skin of broiler chickens aged 30 and 40 days are presented in Table 1.

<table>
<thead>
<tr>
<th>Replication</th>
<th>Feet weak of the Broilers, g</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>30 day old</td>
</tr>
<tr>
<td>Skin Complete feet</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>16.1</td>
</tr>
<tr>
<td>2</td>
<td>16.5</td>
</tr>
<tr>
<td>3</td>
<td>16.5</td>
</tr>
<tr>
<td>Total</td>
<td>49.1</td>
</tr>
<tr>
<td>Average</td>
<td>16.37</td>
</tr>
</tbody>
</table>

Methods

Sample Preparation of Chicken Feet

Broiler feet that have been separated from his body are washed and skinned by the method Purnomo (1992). Chicken feet with the scale still on it were washed clean. Cut finger nails. At the rear of the middle finger the skin was sliced from cob with a knife straight to the base of the longest finger. Weevil exfoliated skin sections up to ± 2 cm downwards and clamped with pliers. Sections of bone that has been exfoliated also clamped with pliers, and then each was held with one hand. Pulled to the opposite directions until the skin on fingertips peeling off. Meat that comes with the skin was removed with knife.
Gelatin Extraction

Making gelatin according to the method by extraction Dwi Wulandari (2006) through the curing process multilevel (alkaline, acid and acid) with slight modifications. Skin chicken feet after separated from the bone was washed, immersed in water at a temperature of 50°C for 30 minutes to remove the scales. Furthermore, washed, cut with a size of ± 1 cm². Furthermore, as many as 400 g of each sample of skin that has been cut, soaked in 0.1% NaOH solution for 40 minutes, then washed with tap water (repeated up to three times), then soaked in 0.1% sulfuric acid solution for 40 minutes , washed with tap water (repeated up to three times). Furthermore, soaked in 0.4% citric acid solution for 40 minutes, washed with tap water (repeated up to three times). Comparison of chicken feet skin was soaking solution was 1 to 5, for each treatment. Subsequently the skin was soaked in distilled water and put into water bath with temperature extraction of 45°C, 50°C and 55°C for 24 hours to extract the gelatin. The next process is filtering gelatin solution using filter paper. Solution of gelatin obtained by each of Approximately 300 ml was container of 30.5 cm x 30.5 cm, then dried in an oven temperature of 60°C for 24 hours. Gelatin obtained then was crushed using a blender and stored for further analysis.

Study Design

Research using Completely Randomized Design (CRD) with factorial pattern, as the first fact of broiler chicken age (30 and 40 days) and second factor was is extraction temperature (45, 50 and 55°C), making six combination treatment and each treatment was replicated five (5) times.

Yield

The yield was calculated as dry weight gelatin/wet weight scaled skinsx100.

Proximate Composition

The moisture, crude protein, crude lipid and ash contents of the extracted gelatin derived from the fermented skate skin were determined in triplicate (AOAC, 1995). Crude protein of the gelatin was expressed as 5.4 x nitrogen content (Johnston-Banks, 1990). All values were calculated on a percent wet weight basis.

Viscosity

Gelatin solutions (10% (w/v)) were made by dissolving the dry powder in distilled water and heating at 60°C. Viscosity as a function of temperature was determined using a computerized Brookfield digital viscometer (Model DV-II, Brookfield Engineering, USA) equipped with a No. 1 spindle (Model RVT) at 60 rpm starting at 40±1°C (Kim, Byun, & Lee, 1994).

Gel Strength

Gel strength was determined according to the method described by Johnston-Banks (1990) on a gelatin gel of 6.67% concentration, formed by dissolving dried broiler feet skin gelatin in 50 ml distilled water. The solution was cooled at 10±1°C for 16 – 18 h. Measurements were conducted at 8±1°C using a Texture Analyzer (TA.XT2, Stable Microsystems LTD, UK) for a 4 mm depression at a rate of 0.5 mm/s using a probe 2 cm in diameter. The gelling and the melting point of gelatin solution was determined visually observing changes in appearance (fluidity) and sinking loaded using a magnetic stirrer bar (1 g) on the top surface of the gelatin sample, respectively.

Statistical Analysis

One-way analysis of variance (ANOVA) was conducted using SAS (SAS Institute Inc., Cary, NC, USA). Data were analyzed using the Tukey test to determine significant differences between means.

RESULTS AND DISCUSSION

Characteristics of feet skin gelatin with different treatment combination of broiler age and extraction temperatures are shown in Table 2.
Yield

The yield is a measure of the percentage of weight gained from the conversion of collagen in the skin. The higher yield being produced, the more efficiently and effectively the performed method. Table 2 showed that the average yield was produced by A2T3, followed by A1T3, A2T2, A1T2, A2T1 and A1T1. From the presented data, it can be seen the trend of increasing extraction temperature, the amount generated yield will be bigger. According Ockerman and Hansen (2000), high extraction temperature would increase yield.

Based on ANOVA, it showed that extraction temperature has a very significant effect on the percentage of gelatin being produced (P < 0.01). Kim et al (2008) stated that the yield of gelatin was continuously increased with increasing temperature and time of extraction. Furthermore, Williams (1997) stated that high temperatures help to break the hydrogen bonds and the gel are hydrolyzed. Number of hydrogen bonds broken and the gel will facilitate the dissolution of collagen in hot water, so as to maximize the acquisition of gelatin.

The results from using the HSD test showed that there was no significant difference (P > 0.01) between treatments. This was probably due to the temperature range being used in this study differed only 5°C, so although there was an increasing yield for each treatment temperature, but the increment was very small. ANOVA results shows the treatment of broiler age and interaction between broiler age and extraction temperature had no significant effect (P > 0.05) on yield of broiler feet skin gelatin. The absence of age effect on yield resulting was probably due to the feet skin of broiler that used a very short life span, the only difference in 10 days. This is in contrast to the results obtained by Cole and McGill (1988) using calf skin with a treatment difference in age, the resulting yield increase with the age of cattle. This difference was probably caused by cow age range used was very wide, namely the age of 6, 18 and 60 months. In addition, the absence of age effect probably caused by that the resulting yield was almost equal to the yield of gelatin from skins of young broiler chickens foot. Swatland (1984) suggested that the protein content of collagen in the skin of animals was affected by age, increasing age of the animal would cause protein and fiber collagen growing stronger. Schriever and Gareis (2007) stated that the collagen derived from younger animals was more easily soluble in hot water, these properties would be decreased with the increasing age.

Table 2. Effect of broiler age and temperature of extraction on characteristic chicken feet skin gelatin.

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>A1T1</th>
<th>A1T2</th>
<th>A1T3</th>
<th>A2T1</th>
<th>A2T2</th>
<th>A2T3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ash content, %</td>
<td>0.253</td>
<td>0.207</td>
<td>0.191</td>
<td>0.393</td>
<td>0.304</td>
<td>0.330</td>
</tr>
<tr>
<td>Fat content, %</td>
<td>0.179</td>
<td>0.098</td>
<td>0.095</td>
<td>0.198</td>
<td>0.125</td>
<td>0.196</td>
</tr>
<tr>
<td>Protein content, %</td>
<td>92.616</td>
<td>93.691</td>
<td>93.871</td>
<td>93.562</td>
<td>93.508</td>
<td>93.876</td>
</tr>
<tr>
<td>Viscosity, poise</td>
<td>6.904<sup>bc</sup></td>
<td>7.089<sup>b</sup></td>
<td>6.293<sup>c</sup></td>
<td>7.723<sup>a</sup></td>
<td>6.51<sup>bc</sup></td>
<td>6.85<sup>bc</sup></td>
</tr>
<tr>
<td>Gel strength, g/cm²</td>
<td>119.849</td>
<td>112.874</td>
<td>127.794</td>
<td>112.938</td>
<td>125.562</td>
<td>115.494</td>
</tr>
</tbody>
</table>

- interaction between the two treatments for all parameters showed no effect (P > 0.05), except for the viscosity parameter
- Different superscripts on the same line showed differences (P < 0.01)
- A1T1 (30 days of broiler age with extraction temperature of 45°C); A1T2 (30 days of broiler age with extraction temperature of 50°C); A1T3 (30 days of broiler age with extraction temperature of 55°C); A2T1 (40 days of broiler age with extraction temperature of 45°C), A2T2 (40 days of broiler age with extraction temperature of 50°C); A2T3 (40 days of broiler age with extraction temperature of 55°C)
Moisture

Result based on ANOVA, showing that the treatment combinations of Broiler age and extraction temperature and the interaction between the two treatments did not influence the moisture of gelatin ($P > 0.05$). The lack of effect of treatments on the moisture content of gelatin, due to similar temperature and time being used. Gelatin moisture values obtained (Table 2) which was between 10.655% - 11.155%, this value still meet quality standards set gelatin SNI (1995), maximally 16%.

Ash Content

Table 2 shows that the percentage of ash content of broiler chicken feet skin gelatin ranged between 0.191% - 0.393%. These values were in accordance with the standards required by SNI, maximally 3.25%. Table 2 also shows that the older the age of chickens, the percentage of ash generated was higher.

Based on ANOVA, it was shown that both treatments of broiler age and extra temperature hed significant ($P < 0.05$) on the percentage of ash content of broiler feet skin gelatin. The effect of age on the ash content of gelatin is probably due to the occurrence of mineralization processes in cattle older. The statement by Muyonga et al (2004) also indicated that the ash content was also considerably higher for skins of Nile perch adult was probably because of increase mineralization on older age.

Value (pH)

Average pH value of gelatin obtained from all treatments ranging from 3.296 to 3.508 (Table 2). This pH value lower than the pH value of research results by Dwi Wulandari (2006) using the same immersion solution, ranging from 4.38 to 4.66. The existence of this difference is likely due to the soaking solution which was still trapped during the process of swelling, was not lost during the laundering and influence the final pH value of the product.

Results of ANOVA indicated that treatment of broiler age and the extraction temperature and the interaction between the treatment showed no significant effect ($P > 0.05$) on the pH value of gelatin. This was caused by the same soaking process, i.e. using alkaline solution (NaOH), and acid solution (H2SO4 and citric acid). With the soaking solution of acid 2 (two) times, possibly had caused the pH of the final products had low values.

Fat Content

Average fat content of gelatin obtained ranged from 0.095% - 0.198% (Table 2). The range is very good value, because it does not exceed 5% which is a maximum value required for the quality of gelatin according to SNI (1995). The low percentage of fat content in the resulting gelatin was probably due to the age of broiler that were still very young, so that the fat under the skin has not been formed (as stated by Muyonga et al., 2004), and extraction temperature used was also very low, so that the fat contained in the skin was not degraded. Mulyati and Sudaryati (2003) suggested that saturated fatty acids would be oxidized by the heat and break down into shorter carbon chain, making them easier dissolution. Winarno (1995) also state that fat molecules containing unsaturated fatty acid radicals would be oxidized during the heating and to farm shorter carbon chain.

Table 2, showed that the treatment of broiler age and extraction temperature treatment influenced significantly ($P < 0.05$) on the fat content of gelatin, but not their interaction ($P > 0.01$). This was in accordance with the statement by Muyonga et al., (2004), that the fat content of Nile perch adult was higher than the young, due to the accumulation of fat under the skin occurs with increasing age of the animal. Further added by Mulyati and Sudaryati (2003), that the fat content of gelatin was determined by the temperature and time of extraction, the longer the heating time the smaller the fat content, but the higher the temperature the higher the levels of fat extraction.
Protein Content

Gelatin as one type of protein that is produced through a process of conversion of hydrolysis of collagen, have very high protein content in them. Poppe (1992) stated that the standard protein content of commercial gelatin was about 85-90%.

Skin gelatin protein content of chicken feet in this study were between 92.661% - 93.876% (Table 2). The high content of protein in gelatin being produced, probably due to the raw materials used comes from chicken that are still young, so that the collagen was extracted perfectly.

ANOVA results indicated that treatment of broiler age and temperature of extraction and their interaction did not significantly influence (P> 0.05) the protein content of gelatin. The lack of effect of treatment is probably due to the treatment solution and time used the same marinade. According to Pearson and Dutson(1992) immersion had caused some cross-peptide bond been hydrolyzed. Imeson (1992) stated that a long immersion time had many more peptide bonds broken, there was a change in protein formation, more and more and more proteins are extracted.

Viscosity

Viscosity is the physical property of gelatin which is also very important. Leiner (2000) stated that the viscosity of gelatin had effect on gel properties, especially on the point of gel formation and melting points. High viscosity yield high rate of melting point and the formation of the gel was higher than the low viscosity of gelatin.

Viscosity values obtained from broiler chicken feet skin gelatin, was between 6.293 to 7.723 poise (Table 2). This was almost the same value obtained by Dwi Wulandari (2006), which was between 7.06 to 7.77 poise and is higher than the results of research Imeson (1992), which was between 1.5 to 7.5 poise. The high value of viscosity which was obtained by Stainsby (1977) correlated with the average molecular weight of gelatin, which was associated with long-chain amino acids. Schrieber and Gareis (2007) stated that the high viscosity of gelatin was related with the many components of high molecular weight.

Results ANOVA indicated that the treatment of broiler age had no significant effect (P> 0.05) on the value of viscosity of gelatin. While temperature of extraction treatment and the interaction between the treatment of broiler age and temperature of extraction caused significant effect (P <0.01). Godmunson (2002) stated that the extraction temperature and time affected the viscosity, the higher the temperature, the lower the viscosity value. This was according to Imeson (1992), due to the high temperature water molecules had a greater energy to move, so that its viscosity was lower (more dilute solution).

Gel Strength

Average gel strength values obtained from chicken feet skin gelatin ranging from 112.874 to 127.794 Bloom. This value was still in accordance with the standards required by the gel strength GMIA (2006) which was ranging from 50-300 Bloom.

Results of ANOVA showed that the age treatment and the interaction between age and temperature of extraction had no significant effect (P > 0.05) on the strength of skin gelatin gel from broiler feet. This is likely related to the molecular weight distribution of gelatin which is almost the same. Gilsenan and Ross-Murphy (2000), stated that the molecular weight distribution associated with the large number of α chains. Furthermore, Sims et al (1997) stated that the conditions forming a stable gel was the ability of free chains to form a lot of cross linking

CONCLUSIONS

Based on the results and discussion, we can conclude as follows: 1). Chicken feet skin gelatin can be used as a substituted for commercial gelatin in food industry application. 2). Treatment of broiler chicken age does not influence the characteristics of gelatin, especially the characteristics of yield, moisture content, pH value, protein content, viscosity, and gel strength, but shows the effect on the
characteristics of ash and fat content. 3). Treatment of extraction temperature has effect on the characteristic extraction yield, ash content, fat content, and viscosity, but did not influence the characteristics of the water content, pH value, protein content and gel strength of skin gelatin foot broiler.

LITERATURE CITED

