PROCEEDING
INTERNATIONAL SEMINAR
ADVANCED TECHNOLOGY ON VETERINARY AND LIFE SCIENCE

ISBN: 978-979-96104-4-7

YOGYAKARTA
MARCH 12th, 2011

FACULTY OF VETERINARY MEDICINE
UNIVERSITAS GADJAH MADA
INTERNATIONAL SEMINAR
ADVANCED TECHNOLOGY ON VETERINARY AND LIFE SCIENCE

PROCEEDINGS

Organized By
Faculty of Veterinary Medicine, Universitas Gadjah Mada

Yogyakarta, March 12th, 2011
Title: Proceedings on International Seminar Advanced Technology on Veterinary and Life Science

Published By: Faculty of Veterinary Medicine Universitas Gadjah Mada

Address: Jalan Fauna 2 Karang Malang Yogyakarta 55281
Phone: +62-274-560860, 560865 Fax: +62-274-580861

March, 2011

Article contents are under responsibility of each authors
CONTENTS

Preface
Welcoming Speech from Chairperson the Organizing Committee
Opening Remark From The Dean of Faculty of Veterinary Medicine
Conference committee
List of Thematic Oral Presentation
List of Poster Presentation

PLENARY SESSIONS
1. Prof. Byeong Chun Lee, DVM., Ph.D. 1
2. Goo Jang, DVM., Ph.D. 8

FULL PAPER FOR ORAL PRESENTATION
Topic 1: Basic Science Sub Topic: Molecular Biology 19
Topic 2: Basic Science Sub Topic: Applied Science 49
Topic 4: Basic Science Sub Topic: Basic Anatomy 92
Topic 5: Preclinical Science Sub Topic: Microbiology 118
Topic 6: Preclinical Science Sub Topic: Fishery 139
Topic 7: Clinical Science Sub Topic: Large Animal and Poultry 170
Topic 8: Clinical Science Sub Topic: Reproduction and Large Animal 186

ABSTRACT FOR POSTER PRESENTATION 240
4. Profile Of Some Blood Chemistry Parameters In Crossbred Ettawa Goats
 Irkham Widiyono and Sarmin

Topic 8 : Clinical Science
Sub Topic: Reproduction and Large Animal

1. Stability of Sardine Fish Oil and Hydrolyzed Blood Protected to Increase
 Productivity of Dairy Cattle
 Ahmad Pramono, Kustono, Prabowo P.P., Dyah Triwidayati and Hari
 Hartadi

2. Folicular Dynamic On Repeat Breeding Crosbreed Cows Examined Using
 Ultrasonography
 Surya Agus Prihatna, Prabowo P.P., Sri Gustari

3. Physiological Functions of Betaine in Monogastric Animals
 Adi Ratriyanto

4. Nuclear Maturation Of Immature Porcine Oocytes After In
 VitroMaturation Following Vitrification
 Agung Budiyanto
THE PROFILE OF FOLLICULAR DEVELOPMENT IN REPEAT BREEDER CROSSBRED COWS BASED ON ULTRASONOGRAPH EXAMINATION

Surya Agus Prihatno¹
Sri Gustari²

¹,² Departement of Reproduction and Obstetry, Faculty of Veterinary Medicine, GMU, Jl. Fauna no. 2, Karang Malang, Yogyakarta

Introduction

Repeat breeding is one of the main problems that can affect the reproductive efficiency and productivity in cattle. The incidence of repeat breeding in cows so high and very detrimental to farmers. The most obvious loss are low calf production (ideally every 12 months to produce one calf, in fact, every 18 months or more just to produce one calf), approximately 35% pregnancy rate, and increased operational costs.

Repeat breeding in general can be caused by (1) failure of fertilization and (2) due to early embryonic death (Linares, 1980). Failure of fertilization and early embryonic death might be due to management factors, infections, environmental, hormonal, nutritional and ovarian disorders ((Swensson and Andersson, 1980; Zemjanis, 1980; Copelin et al, 1988). Ovarian disorders that often happens is that the ovaries activity that are not optimal. The disorder follicle development (folliculogenesis) may influence the ovulation and in the event of delayed ovulation. Ideally, folliculogenesis including sequential process of recruitment, selection, growth and maturation during the cycle of female animals and ends with ovulation. This process is regulated by the interaction between hormone, growth factors, genetic and cell communication system (Roche and Bolland, 1991).
Ultrasound scans have been used to determine the pattern of follicular growth at the age of two weeks prior to puberty in beef cows and heifers (Savio et al, 1988; Ginther et al, 1989; Sunderland et al, 1994.), in post partum cows (Savio et al, 1990.), in pregnant cows (Tatcher et al., 1991), in cattle after estrus synchronization treatment (Stock and Fortune, 1993) and in anovulatory cows (McDougall et al., 1995).

At present, note that the patterns that arise in the development of follicles is a pattern of two follicular waves (Pierson and Ginther, 1988) and three-wave patterns of follicular (Stock and Fortune, 1993). Cycles with one and four follicular waves have also been reported but only slightly (Carriere et al, 1994.). The aim of this study was to determine the pattern of follicular development in cows that experienced repeat breeding in a natural cycle and cows that PGF-2α is injected based on an ultrasound examination.

Material and Methods

Ten crossbred cows suffering from repeat breeding, which is owned by farmers, aged between 4 to 8 years, have been bred more than 3 times, the non-pregnant, healthy and have normal estrous cycles. Cows were then divided into 2 groups, each consisting of 5 head. The control group, are cows with natural estrus cycle, whereas the treatment group is the cow with the results of the estrous cycle after estrus induction using prostaglandin F 2α.

All cows were observed for estrus cycle lust either naturally (control) or with an injection of prostaglandin F 2α. On the first day after estrus (day 1) started the examination of ovarian follicle diameter either by rectal exploration or using electronic ultrasound-made Honda HS 2000VET with 7.5 MHz linear array.
Examination performed on all cows once every 2 days during one cycle. The data observed is the growth and follicle size. The result data of examination using ultrasound were recorded and analyzed by descriptive and T-test. Animals that showed estrus were mated directly through artificial insemination (AI). Pregnancy diagnosis by rectal exploration was performed 3 months after AI.

Results And Discussion

The pattern of follicular development in repeat breeder cows with an ultrasound examination can be seen in Figure 1. below.

In the early development of follicles (after ovulation), the average diameter of the follicles are about 3 mm. This condition is the same as opinion of Renis (2001) which states that after ovulation the diameter of follicles in groups are about 2-5 mm. But in this research, there is one cow that the follicle does not ovulation but gradually decline. The existence of unovulatory follicles could be due to the low concentration of luteinizing hormone (LH).

The results (Figure 1) shows that the pattern of follicle development in the natural cycle group consists of 2 waves of follicle development. In the first wave, maximum follicular diameter (dominant) (11.60 mm) was achieved on day 8 of the estrous cycle, while the maximum diameter of follicles (follicles De Graaf) (15.40 mm) on the wave-2 occurred on days-20 of the estrous cycle. These conditions seem to be similar to the conditions follicles in fertiles cow. It is said that, during the estrous cycle in cows could be occured 2 waves follicular growth (Ginting et al, 1989.), or three waves (Taya et al., 1996).
Diameter of dominant follicle in wave 1 is not as big as in wave 2 (11.60 mm vs. 15.40 mm). At wave 1, from a group of follicles, only one follicle that grows with the size of the dominant follicle. The growth of one follicle reaches the dominant follicle may be due to hormone levels of follicle stimulating hormone (FSH) was not able to stimulate follicular development as a whole (Rensis, 2001). The existence of this dominant follicle may be hinder small follicles to obtain adequate gonadotropin. These barriers occur passively by pressing the concentrations of FSH, or actively by reducing the sensitivity to FSH (Driancourt, 1991). On days 10 of estrous cycle, the diameter of dominant follicles to shrink and with it occurred a 2nd wave of follicular development, and the peak occurred on day 20 of estrus cycle (follicle de Graaf) which is characterized by symptoms of estrous. Rapid development of follicles in the wave 2 thought to be caused by adequate of FSH levels in the blood. This is in accordance with the opinion Rensis (2001) which states that the development of follicles in cows that have 2 waves of follicle development, the follicles will grow rapidly and become De Graaf follicles (matured follicles). In the present research, profile of ovarian follicles of repeat breeder PO cattle that has injected by prostaglandin F-α can be seen in Figure 2.
Diameter of dominant follicle in wave 1 is not as big as in wave 2 (11.60 mm vs. 15:40 mm). At wave 1, from a group of follicles, only one follicle that grows with the size of the dominant follicle. The growth of one follicle reaches the dominant follicle may be due to hormone levels of follicle stimulating hormone (FSH) was not able to stimulate follicular development as a whole (Rensis, 2001). The existence of this dominant follicle may be hinder small follicles to obtain adequate gonadotropin. These barriers occur passively by pressing the concentrations of FSH, or actively by reducing the sensitivity to FSH (Driancourt, 1991). On days 10 of estrous cycle, the diameter of dominant follicles to shrink and with it occurred a 2nd wave of follicular development, and the peak occurred on day 20 of estrus cycle (follicle de Graaf) which is characterized by symptoms of estrous. Rapid development of follicles in the wave 2 thought to be caused by adequate of FSH levels in the blood. This is in accordance with the opinion Rensis (2001) which states that the development of follicles in cows that have 2 waves of follicle development, the follicles will grow rapidly and become De Graaf follicles (matured follicles). In the present research, profile of ovarian follicles of repeat breeder PO cattle that has injected by prostaglandin F-α can be seen in Figure 2.