"COMMUNITY EMPOWERMENT AND TROPICAL ANIMAL INDUSTRY"

PROCEEDINGS

Part 2

YOGYAKARTA, OCTOBER 19-22, 2010

Published by
Faculty of Animal Science, Universitas Gadjah Mada
2010
Community Empowerment and Tropical Animal Industry

This publication is issued as the Proceedings of the Fifth International Seminar on Tropical Animal Production held in Yogyakarta, Indonesia October 19-22, 2010.

Published by:
Faculty of Animal Science
Universitas Gadjah Mada
Jl. Fauna 3, Bulaksumur
Yogyakarta, Indonesia 55281
www.fapet.ugm.ac.id

ISBN: 978-979-1215-21-3

© Faculty of Animal Science, Universitas Gadjah Mada
No part of this publication may be reproduced or transmitted in any forms or by any means, electronic or mechanical, now known or heretofore invented, without permission in writing form the publisher.
Editor-in-Chief

Krishna Agung Santosa
(Universitas Gadjah Mada, Indonesia)

Editorial Board

Ali Wibowo
Budi Gunteroto
Dale R. ZoBell
Egil Robert Ørskov
Endang Sulasri
I Gede Suparta Budisatria
Mogens Lund
Ryo Akashi
Soeparno
Subur Priyono Sasmito Budhi
Tohru Suzuki
Widodo
Yanin Opatpanenakit

(Universitas Gadjah Mada, Indonesia)
(Universitas Gadjah Mada, Indonesia)
(Utah State University, USA)
(Macaulay Institute, United Kingdom)
(Universitas Gadjah Mada, Indonesia)
(Universitas Gadjah Mada, Indonesia)
(University of Copenhagen, Denmark)
(University of Miyazaki, Japan)
(Universitas Gadjah Mada, Indonesia)
(Universitas Gadjah Mada, Indonesia)
(Gifu University, Japan)
(Universitas Gadjah Mada, Indonesia)
(Maejo University, Thailand)

Editorial Staff

Dyah Woro Hastuti
Wirasto
Wisnu Widiarto
LIST OF CONTENTS

PREFACE ... iii
REPORT FROM ORGANIZING COMMITTEE iv
WELCOME ADDRESS .. v
OPENING REMARKS .. vi
LIST OF CONTENTS ... vii

PART I
PLENARY SESSION

1. Asian livestock: Opportunities, challenges and the response
 Vinoj Ahuja .. 1 – 5

2. Cattle extension programs and research for tropical agriculture
 Dale R. ZoBell .. 6 – 10

3. The revolving fund system in sustainable community development
 Grant Davidson, and E.R. Ørskov 11 – 18

4. Intensification of smallholder livestock production: Is it sustainable?
 Hendrik M.J. Udo and Fokje Steenstra 19 – 26

5. The development of Danish agriculture and agribusiness: Lessons to be learned in a
 global perspective
 Henning Otte Hansen and Mogens Lund 27 – 35

6. Genome research of gut bacteria, how to analyze and how to apply?
 Tohru Suzuki, Kouta Sakaguchi, and Kazumasa Yasui 36 – 40

7. Animal production in Thailand: Challenges and potentials in global market
 Yamin Opatpatanakit .. 41 – 49

8. Improvement of forage quality by means of molecular breeding in tropical grasses
 Takahiro Gondo, Genki Ishigaki, Yasuyo Himuro, Nafiatul Umami and Ryo Akashi
 ... 50 – 56

9. Advance research in function and healthy food from animal products – antihypertensive
 peptides derived from meat protein hydrolysates
 Michio Muguruma, Jamhari, Yuny Erwanto, and Satoshi Kawahara
 ... 57 – 63

SUPPORTING PAPERS

Animal Feed and Nutrition

1. Exploration of pathogenic and non-Pathogenic Fungi on Alfalfa (Medicago sativa L)
 Turlini Yudiarti, Sumarsono, and Didik Wisnu Widjajanto 64 - 67

2. Organic fertilizer application on performance and production of King grass in acid soil
 Sumarsono, Syaiful Anwar, Didik Wisnu Widjajanto, and Susilo Budiyanto 68 - 71
32. The effect of green tea extract (camellia sinensis) supplementation on blood profiles and lipid oxidation in broilers fed high pufa diet

Isti Astuti, Supadmo, Sugeng Riyanto, Supriyadi ... 239 - 242

33. The role of lactic acid bacteria on silage duration process and rumen content silage quality

Isnandar, R. Utomo, S. Chuzaemi, E. Sutariningsih, and L.M. Yusiat 243 – 249

34. Replacing enzose by corn grains: impact on nutrients utilization and weight gain in growing buffalo calves

M.Nisa, M.Aasif Shahzad, and M.Sarwar .. 250 – 256

35. Nutrients utilization, nitrogen dynamics and weight gain in growing buffalo calves fed graded replacement of urea by corn steep liquor

M.Aasif Shahzad, M.Nisa, and M.Sarwar .. 257 – 261

36. Production and nutritive value of mulberry hay as potential feed supplement for ruminants

Z.A. Jelan and A.R. Alimon .. 262 – 265

37. The retention of copper in sheep fed palm kernel cake supplemented with molybdenum, molybdenum plus sulphur and zinc

A.R. Alimon, R.A. Al-kirshi and Z.A. Jelan ... 266 - 268

38. Utilization of complete feed based on fermented rice straw for australian commercial cross steer on carcass and meat quality

Bambang Suwignyo, Ristianto Utomo, Yuny Erwanto and Ali Agus 269 – 273

39. The measurement of rate of passage using different pairs of alkane as markers for sheep fed hay or fresh grass

A. Kustantinah, R.W. Mayes, and E.R. Orskov .. 274 – 281

40. Aflatoxin m1 excretion in the milk of tropical dairy cow fed contaminated aflatoxin b1 in the diet

Poultry Production

1. The interaction of dietary lysine and temperature on egg laying performance of broiler breeders

Abdulameer Al-Saffar ... 286 – 290

2. Digestible methionine requirement for performance and carcass yield of broiler finisher

N.G.A. Mulyantini .. 291 – 295

3. Resource use efficiency in poultry production in Bureti District, Kenya

4. In vitro evaluation of phytogetic potential of seed from mango (Mangifera indica), moringa (Moringa oleifera) and sweet apple (Annona squamosa) for poultry

Rusdi, Asraini Hasanuddin, Rosmiaty Arief ... 303 – 307

5. The effect of adding vitamine C and E In native chicken semen extender storaged at temperature 4 °C on semen quality and egg fertility

Widya Asmarawati, Ismaya, and Tri Yuwanta .. 308 – 313
4. Breeding programme development of Bali cattle at P3Bali
 Andoyo Supriyanto, Luqman hakim, Suyadi, and Ismudiono .. 541 - 546

5. Friesian holstein imported cows: physiological character and blood composition based on altitude difference
 Ratna Dewi Mundingsari, Adiarto, and Soenarjo Keman .. 547 – 551

6. Breeding value of Friesian Holstein bulls in PT. Naksara Kejora Rowoseneng, Temanggung, Central Java
 Hasyim Mulyadi, Indrawati Mei P., and RR. Mahardika N.P. ... 552 – 555

7. Genetic potency of weaning weight of boerawa F1, backcross 1, and backcross 2 does at breeding centre, Tanggamus Regency, Lampung Province
 Sulastri ... 556 – 560

8. Distribution of population and production estimate of some cattle breeds at Yogyakarta Province, Indonesia
 Sumadi, Tety Hartatik, and Sulastri ... 561 – 564

9. In vitro fresh sperm preparation for maintaining sperm viability at storage temperature of 14°C using tannin supplementation of lamtoro leaves
 Mirajuddin, Kustono, Ismaya, and A. Budiyanto ... 565 – 571

10. Phenotype and phylogenetic studies of local cattle in pacitan district, East Java, Indonesia
 Muhammad Cahyadi, and Tety Hartatik .. 572 – 577

11. The exploration of genetic characteristics on Madura cattle

12. Breeding Bos javanicus d’Alton cattle in Eastern Indonesia: Cattle reproduction
 Geoffrey Fordyce, Tanda Panjaitan, Totok B. Julianto, Eliza Kurtz, and Dennis Poppi 585 - 589

13. Improvement quality of Bligon goat sperm trough separation by albumen
 Sigit Bintara, Soenarjo Keman, Sumadi, and Ali Agus .. 590 – 594

14. Correlation between plasma progesterone concentrations and fecal Progestins during the estrus cycle of Kedah Kelantan cows

15. Effect of PGF2α, or CIDR on ovarian follicular development during estrous cycle in goats
 Muhammad Modu Bukar, Rosnina Yusoff, Abd Wahid Haron, Gurmeet Kaur Dhaliwal, Mohammed Ariff Omar, Nur Husien Yimer, Mohd Azam Khan Goriman Khan ... 599 – 602

16. The use of frozen semen of Holstein-Friesian bulls with the BB genotype of the kappa casein gene in Indonesia
 A. Anggaraeni, C. Sumantri, and E. Andreas .. 603 – 608

17. Effect of haylage made of kume grass standinghay fermented with liquid palm sugar and local chicken manure on semen quality and scrotum circumference of male local goat
 Henderiana L.L. Belli and Nathan G.F. Katipan ... 609 – 613

18. The early identification of twinning trait genes on Indonesian local beef cattle
 Aryogi, Endang Baliarti, Sumadi, and Kustono .. 614 - 622
The effect of adding vitamin C and E in native chicken semen extender stored at temperature 4 °C on semen quality and egg fertility

Widya Asmarawati, Ismaya, and Tri Yuwanta

Faculty of Animal Science Universitas Gadjah Mada Yogyakarta Indonesia

ABSTRACT: The objective of this research was to verify the addition of vitamin E (α-tocopherol) and vitamin C (ascorbic acid) as antioxidants and the storage at 4°C on semen quality and fertility. Semen was collected and pooled once time every 3 days from 10 cockerels aged 56 weeks. It was diluted into Buffer phosphate and divided into seven (7) treatments, i.e.; control; vitamin E (α-tocopherol 0.1 mM, 0.3 mM, 0.5 mM), and vitamin C (ascorbic acid 2,500 µg/mL; 5,000 µg/mL; 7,500 µg/mL), and then was stored at 4°C for 72 hours. Semen quality was evaluated after 0 hour, 6 hour, 24 hour, 48 hour, and 72 hours storage. Data were analyzed by analyses of variance split subject, and Duncan’s Multiple Range Test (DMRT). A total of 24 hens of Lohman Brown commercial layers were inseminated with 400 x 10^6 sperm for chicken fertility trials. The result showed that diluents treatment gave significantly effect (P≤0.05) on pH and sperm abnormality, but not different on motility and viability. Stored sperm gave significantly effect (P≤0.05) on motility, pH, viability, and sperm abnormality. Vitamin E improved the fertilizing ability until 93.10 ± 5.98 % of semen stored for 6 hours at 4°C at the dose of 0.3 mM of semen diluent. It can be concluded that addition of vitamin E to extended chicken semen keeps motility, viability, and sperm normal morphology after 72 hours storage at 4°C. In contrast, vitamin C decrease motility, pH, and sperm viability.

Key words: native chicken, buffer phosphate, vitamin C, vitamin E, semen quality, fertility

INTRODUCTION

Major problem faced by the technology of artificial insemination is the viability spermatozoa after ejaculation, due to losing its integrity and ability to fertilize of the a few months of collection (Tri-Yuwanta et al., 1998). Lowering of sperm quality which is store in vitro will affect to degradation of fertility in a short time.

Proportion Polyunsatured fatty acids (PUFA) in fowl spermatozoa membrane keep the stability and membrane flexibility during the fertilization process. Long and Kramert (2003) argued that the damage caused by lipid peroxidation in poultry sperm includes damage to morphology, degradation of motility and lower fertility. In addition, Blesbois (2007) reported damage of membrane spermatozoa caused degradation of motility and differences in metabolic factor including ATP concentration in spermatozoa. The aim of present study was to evaluate the influence of ascorbic acid and vitamin E in phosphate buffer extender stored at temperature 4 °C on sperm quality and egg fertility.

MATERIALS AND METHODS

Materials Research

Sperm was obtained from ten male native chicken aged 56 weeks which were reassed in individual cages. Males were consumed commercial feed for native chicken in ad libitum, that was R-19 produced by PT Japfa Comfeed Surabaya. Twenty-four Lohmann Brown layer hens aged 92 weeks used for artificial insemination (AI), were also reared in individual cage.

Material utilized was Na- phosphate monobasis, Na- phosphate dibasis, aquadest, alcohol, gentamicine, vitamin E (α-tocopherol) produced by E-merck, vitamin C (L(+)) ascorbic acid produced by E-merck with purity rate 99.7%, ethanol, hayem solution and eosin.
Research Methods

Semen was collected according to Burrows and Quinn method (1937) that was dorso-abdominal massage (Donoghue and Wishart, 2000). Each chicken was collected once for every replication.

Semen extender used Buffer phosphate (BP) with Gentamicin 0.5 mg/100 mL and pH adjusted to 7.2 (Anonimus, 2004). Buffer phosphate divided into seven different tubes. One tube for extender without vitamins addition, whereas the next three tubes added by vitamin C; 2500 μg/mL, 5000 μg/mL, and 7500 μg/mL, respectively. Then the last of three tubes added by vitamin E to produces final concentration 0.1 mM, 0.3 mM, and 0.5 mM respectively. Vitamin E was added in the form of stock solution in ethanol.

Pooled semen was assessed, then divided into seven equal parts. Each parts was diluted in the ratio of sperm: extenders was 1:2. Treatment in tube I for sperm with BP/Buffer phosphate (control); tube II for sperm with BP which added vitamin C 2500μg/mL (C1); tube III for sperm with BP which added vitamin C 5000μg/mL (C2); tube IV for sperm with BP which added vitamin C 7500μg/mL (C3); tube V for sperm with BP which added vitamin E 0.1 mM (E1); tube VI for sperm with BP which added vitamin E 0.3 mM (E2); and tube VII for sperm with BP which added vitamin E 0.5 mM (E3). Every treatment stored in refrigerator (temperature 4°C) for 72 hours. Observations were carried out for five times at 0, 6th, 24th, 48th and 72th hours. Each treatment was replicated five times from five different storage times.

Artificial insemination was performed to assess fertility rate. Only BP, E1, E2, and E3 were tested for fertility because C1, C2 and C3 produce lower semen quality than control. Each treatment tested by artificial insemination with three times a replication and each replication consisted of two hens.

Hens were inseminated with liquid semen which had been stored at temperature 4 °C during 6 hours. Artificial insemination performed with intravaginal method at 2.00 to 3.00 PM or 4 to 3 hours before dark. Artificial insemination in the manner and the same dose (200 x 10⁶) was repeated again the next day for each chicken treatment.

Eggs were collected on days 2 to 7 after first artificial insemination. The fertility was determined by candling the eggs 7 days after the incubation started.

Analysis Data

Data obtained from fresh sperm (includes volume, color, consistency, concentration, motility, viability, abnormalities and fertility) was analyzed with a mean and standard deviation. Motility, pH, viability, and abnormality after in vitro treatment were analyzed with Split design subject, followed by DMRT test (Astiti, 1980).

RESULTS AND DISCUSSION

Fresh Sperm of Native Chicken

Fresh sperm characteristic of native chicken after storage is presented at Tables 1 below.

Table 1. Fresh sperm characteristic of native chicken

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Result (average ± SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume (mL)</td>
<td>0.25±0.09</td>
</tr>
<tr>
<td>Colour</td>
<td>White</td>
</tr>
<tr>
<td>Consistency</td>
<td>Viscous</td>
</tr>
<tr>
<td>pH</td>
<td>7.07±0.08</td>
</tr>
<tr>
<td>Concentration (x 10⁸ spermatozoo/mL)</td>
<td>369±1.10</td>
</tr>
<tr>
<td>Motility (%)</td>
<td>86.67±8.16</td>
</tr>
<tr>
<td>Viability (%)</td>
<td>96.80±3.35</td>
</tr>
<tr>
<td>Abnormality (%)</td>
<td>5.26±3.18</td>
</tr>
</tbody>
</table>

The results showed fresh sperm of native chicken had average of volume 0.25±0.09 mL; white colour; consistency viscous; pH 7.07±0.08; concentration 3.69±1.10x10⁸/mL; motility 86.67±8.16%;
viability 96.80±3.35%; abnormality 5.26±3.18%. Results of this research within normal limits, which was volume ranges from 0.1 to 0.9 ml (Etches, 1996); viscous white color (Uomo, 1997); pH between 7.1 to 7.25 (Tri-Yuwanta et al., 1998); concentrations between 3.10^7 to 7.10^9 spermatooza/mL (Hafez, 2000); viabilities with average 96.64% and abnormalities around 8% (Blesbois et al., 2005).

Native Chicken Sperm After Diluted Using Buffer Phosphate with Addition Vitamin C or E and Kept in Temperature 4°C for 72 hours

Motility

Motility of stored sperm in vitro at temperature 4°C during 72 hours with treatments of diluent BP, C1, C2, C3, E1, E2, and E3 can be seen at Table 2 below.

Table 2. Average of sperm motility stored at temperature 4°C in various treatments of diluent for 72 hours

<table>
<thead>
<tr>
<th>Extender</th>
<th>0 hour</th>
<th>6 hours</th>
<th>24 hours</th>
<th>48 hours</th>
<th>72 hours</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>BP</td>
<td>80.00±6.12a</td>
<td>78.00±6.71a</td>
<td>69.00±18.51b</td>
<td>57.00±28.64b</td>
<td>41.00±31.70c</td>
<td>65.00±24.37</td>
</tr>
<tr>
<td>C1</td>
<td>71.00±18.17a</td>
<td>68.00±17.54a</td>
<td>62.60±16.70a</td>
<td>38.60±17.95a</td>
<td>14.00±13.87c</td>
<td>50.84±26.97</td>
</tr>
<tr>
<td>C2</td>
<td>74.00±13.87a</td>
<td>74.00±13.87a</td>
<td>62.40±19.27a</td>
<td>37.00±24.40a</td>
<td>16.00±12.94c</td>
<td>52.68±28.17</td>
</tr>
<tr>
<td>C3</td>
<td>77.00±7.58a</td>
<td>75.00±11.73a</td>
<td>66.00±16.73a</td>
<td>37.40±22.23a</td>
<td>13.60±8.44b</td>
<td>53.20±28.72</td>
</tr>
<tr>
<td>E1</td>
<td>78.00±8.37a</td>
<td>77.00±7.58a</td>
<td>73.00±7.58b</td>
<td>61.40±15.16a</td>
<td>49.00±20.12b</td>
<td>67.68±16.24</td>
</tr>
<tr>
<td>E2</td>
<td>78.00±8.37a</td>
<td>75.00±10.61a</td>
<td>65.60±17.44a</td>
<td>58.00±23.61a</td>
<td>46.00±24.34b</td>
<td>64.52±20.35</td>
</tr>
<tr>
<td>E3</td>
<td>79.00±6.52a</td>
<td>75.00±10.61a</td>
<td>69.60±14.26a</td>
<td>59.00±23.29a</td>
<td>52.00±19.56c</td>
<td>66.92±17.80</td>
</tr>
</tbody>
</table>

* Data with different superscripts within each row were significantly different (P≤0.05)
* Data with different superscripts within each column were significantly different (P≤0.05)
* Non significant

Diluted treatment on sperm motility at various observation hours (0, 6, 24, and 48 hours) did not significantly different, except at 72 hours. Motility observation of spermatooza indicated treatment C1, C2, and C3 were significantly different with BP, E1, E2, and E3 (P≤0.05). Whereas, addition of vitamin C and E did not increase sperm motility.

In vitro storage at temperature 4°C in the treatment BP, C1, C2, C3, E1, E2, and E3 showed significant differences (P≤0.05) for motility. Motility decreased over storage time, especially after 72 hours in all treatment. Castellini et al. (2000) stated that vitamin E provides oxidative stability of stored sperm, while sperm were given additional vitamin C produce ROS in higher level that instantaneously drops fast of motility and motion speed of spermatooza.

Sperm pH

Observation result of pH sperm stored in vitro at temperature 4°C during 72 hours with treatments of diluent BP, C1, C2, C3, E1, E2, and E3 can be seen at Table 3 below. Results showed the treatment of diluents in various observation hours were significantly different (P≤0.05). It's due to addition of vitamin C into diluent results degradation of pH. More and more vitamin C level given will decline pH sperm.
Table 3. Average of pH of sperm stored at temperature 4 °C in various treatments of diluent during 72 hours

<table>
<thead>
<tr>
<th>Extender</th>
<th>0 hour</th>
<th>6 hours</th>
<th>24 hours</th>
<th>48 hours</th>
<th>72 hours</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>BP</td>
<td>7.10±0.07a</td>
<td>7.12±0.04a</td>
<td>7.06±0.26b</td>
<td>7.08±0.33ab</td>
<td>7.16±0.11a</td>
<td>7.10±0.18a</td>
</tr>
<tr>
<td>C1</td>
<td>6.84±0.05b</td>
<td>6.84±0.05b</td>
<td>6.88±0.90b</td>
<td>6.90±0.10b</td>
<td>6.84±0.13b</td>
<td>6.86±0.09b</td>
</tr>
<tr>
<td>C2</td>
<td>6.64±0.05c</td>
<td>6.60±0.10c</td>
<td>6.68±0.16ab</td>
<td>6.66±0.17c</td>
<td>6.70±0.20bc</td>
<td>6.66±0.14c</td>
</tr>
<tr>
<td>C3</td>
<td>6.48±0.08d</td>
<td>6.46±0.05d</td>
<td>6.54±0.18c</td>
<td>6.48±0.15c</td>
<td>6.56±0.13c</td>
<td>6.50±0.12d</td>
</tr>
<tr>
<td>E1</td>
<td>7.04±0.09xy</td>
<td>7.06±0.09xy</td>
<td>7.18±0.04a</td>
<td>7.14±0.10xy</td>
<td>7.12±0.11xy</td>
<td>7.11±0.10a</td>
</tr>
<tr>
<td>E2</td>
<td>7.06±0.55a</td>
<td>7.16±0.89a</td>
<td>7.16±0.11a</td>
<td>7.14±0.09a</td>
<td>7.12±0.11a</td>
<td>7.13±0.10a</td>
</tr>
<tr>
<td>E3</td>
<td>7.08±0.08a</td>
<td>7.08±0.11a</td>
<td>7.12±0.08a</td>
<td>7.16±0.09a</td>
<td>7.14±0.13a</td>
<td>7.12±0.10a</td>
</tr>
</tbody>
</table>

a,x,y: Data with different superscripts within row were significantly different (P≤0.05)
a,b,c,d: Data with different superscripts within column were significantly different (P≤0.05)
ns: Non significant

In vitro storage treatment at temperature 4°C showed significantly different (P≤0.05) to sperm pH. All pH treatments tend to still after stored during 72 hours, but just in treatment E1 showed existence significantly different (P<0.05). Motility and metabolic rate of spermatozoa convertible by diluent pH, low pH can reduce the motility, lactic acid production, and oxygen demand of chicken spermatozoa, whereas high pH increased metabolic rate in vitro (Donoghue and Wishart, 2000).

Viability

The results of spermatozoa viability which stored in vitro at temperature 4 °C during 72 hours with treatment of diluent BP, C1, C2, C3, E1, E2, and E3 is presented at Table 4 below.

Table 4. Average of native chicken sperm viability stored at temperature 4 °C in various semen extenders for 72 hours

<table>
<thead>
<tr>
<th>Extender</th>
<th>0 houra</th>
<th>6 hoursa</th>
<th>24 hoursa</th>
<th>48 hoursa</th>
<th>72 hours</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>BP</td>
<td>96.12±3.63a</td>
<td>93.40±3.85xy</td>
<td>89.24±7.42xy</td>
<td>77.34±8.24yx</td>
<td>61.80±24.81a</td>
<td>83.58±17.15</td>
</tr>
<tr>
<td>C1</td>
<td>94.32±5.09b</td>
<td>93.43±3.24a</td>
<td>87.46±10.27y</td>
<td>73.76±15.33y</td>
<td>29.60±16.82a</td>
<td>75.71±26.83</td>
</tr>
<tr>
<td>C2</td>
<td>94.24±5.53c</td>
<td>94.52±3.82a</td>
<td>88.02±8.12a</td>
<td>75.50±14.87a</td>
<td>31.00±15.12b</td>
<td>76.66±26.19</td>
</tr>
<tr>
<td>C3</td>
<td>95.60±3.44a</td>
<td>94.28±3.95a</td>
<td>86.20±8.23a</td>
<td>75.86±11.87a</td>
<td>30.60±14.45b</td>
<td>76.51±25.97</td>
</tr>
<tr>
<td>E1</td>
<td>96.94±3.35a</td>
<td>95.14±4.26a</td>
<td>88.94±10.99a</td>
<td>80.32±11.91a</td>
<td>64.50±16.92a</td>
<td>85.17±15.58</td>
</tr>
<tr>
<td>E2</td>
<td>95.98±3.08a</td>
<td>95.37±2.70a</td>
<td>87.42±9.10a</td>
<td>77.11±10.50a</td>
<td>62.20±23.13a</td>
<td>83.62±17.10</td>
</tr>
<tr>
<td>E3</td>
<td>97.20±2.95a</td>
<td>95.80±2.59a</td>
<td>88.48±7.46a</td>
<td>81.32±10.08a</td>
<td>66.20±18.86a</td>
<td>85.80±14.89</td>
</tr>
</tbody>
</table>

a,y,z: Data with different superscripts within row are significantly different (P≤0.05)
a,b: Data with different superscripts within column are significantly different (P≤0.05)
ns: Non significant

Dilution treatments on the sperm viability at various hours of observation showed no significant differences except at 72 hours. Observation at 72 hours showed significantly different (P≤0.05). C1 treatment showed lowest viability, while E3 had the highest viability after stored during 72 hours at temperature 4 °C. Similar to statement of Donoghue and Donoghue (1997) that addition of vitamin E 80 μg/mL into turkey semen diluent can maintain spermatozoa viability up to 68.6 % when stored in vitro during 48 hours.

In vitro storage at 4 °C on the spermatozoa viability of the treatment BP, C1, C2, C3, E1, E2, and E3 at various hours of observation were significantly different (P≤0.05). It was due to vitamin C only
works as an extracellular antioxidant, while vitamin E is an intracellular antioxidant (Donoghue and Donoghue, 1997). Castellini et al. (2000) also stated that free radical inhibitors on the surface membrane only done by vitamin E.

Spermatozoa Abnormality

The results of spermatozoa abnormality in the diluent treatments BP, C1, C2, C3, E1, E2, and E3 which stored in vitro at temperature 4 °C during 72 hours is presented at Table 5 below.

Table 5. Average of native chicken spermatozoa abnormality stored at temperature 4 °C in various treatments of diluent during 72 hours

<table>
<thead>
<tr>
<th>Extender</th>
<th>0 hour</th>
<th>6 hours</th>
<th>24 hours</th>
<th>48 hours</th>
<th>72 hours</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>BP</td>
<td>4.52±1.62<sup>y</sup></td>
<td>8.68±3.82<sup>y</sup></td>
<td>14.30±7.45<sup>y,ab</sup></td>
<td>16.90±2.50<sup>y,ab</sup></td>
<td>19.60±2.51<sup>y,abc</sup></td>
<td>12.80±6.76<sup>y</sup></td>
</tr>
<tr>
<td>C1</td>
<td>5.60±2.59<sup>c</sup></td>
<td>9.36±1.10<sup>c</sup></td>
<td>9.68±3.82<sup>bc</sup></td>
<td>15.00±5.48<sup>ab</sup></td>
<td>23.20±7.16<sup>a</sup></td>
<td>12.57±7.49<sup>c</sup></td>
</tr>
<tr>
<td>C2</td>
<td>4.60±2.57<sup>c</sup></td>
<td>8.66±2.92<sup>c</sup></td>
<td>11.60±3.12<sup>c,abc</sup></td>
<td>16.10±2.26<sup>ab</sup></td>
<td>19.60±3.29<sup>c,abc</sup></td>
<td>12.11±6.00<sup>c</sup></td>
</tr>
<tr>
<td>C3</td>
<td>6.07±2.74<sup>c</sup></td>
<td>7.46±2.92<sup>c</sup></td>
<td>15.28±2.40<sup>c,d</sup></td>
<td>17.98±2.76<sup>c,b</sup></td>
<td>20.42±1.06<sup>c,ab</sup></td>
<td>13.44±6.25<sup>c</sup></td>
</tr>
<tr>
<td>E1</td>
<td>5.12±1.73<sup>c</sup></td>
<td>5.16±1.92<sup>c</sup></td>
<td>9.06±1.82<sup>c,b</sup></td>
<td>13.28±4.71<sup>c,ab</sup></td>
<td>16.62±2.53<sup>c,bcd</sup></td>
<td>9.85±5.27<sup>c</sup></td>
</tr>
<tr>
<td>E2</td>
<td>5.68±0.50<sup>c</sup></td>
<td>6.68±2.39<sup>c</sup></td>
<td>8.00±2.55<sup>c,cd</sup></td>
<td>11.28±6.73<sup>c,b</sup></td>
<td>14.90±2.12<sup>c,cd</sup></td>
<td>9.31±4.72<sup>c</sup></td>
</tr>
<tr>
<td>E3</td>
<td>5.66±2.25<sup>c</sup></td>
<td>5.72±1.47<sup>c</sup></td>
<td>6.28±1.62<sup>c</sup></td>
<td>11.42±4.33<sup>c,b</sup></td>
<td>14.02±2.52<sup>c,cd</sup></td>
<td>8.62±4.72<sup>c</sup></td>
</tr>
</tbody>
</table>

^{x,y,z} : Data with different superscripts within same row are significantly different (P<0.05)
^{a,b,c,d} : Data with different superscripts within same column are significantly different (P<0.05)
^{ns} : Non significant

The results showed that diluents treatments significantly different (P<0.05) to sperm abnormality at various observation hours (0, 6th, 24th, 48th, and 72nd). Abnormality levels after storage for 72 hours at 4 °C in the treatments of BP, C1 C2, C3, E1, E2, and E3 were 19.60 ± 2.51%, 23.20 ± 7.16%, 19, 60 ± 3.29%, 20.42 ± 1.06%, 16.62 ± 2.53%, 14.90 ± 2.12%, and 14.02 ± 2.52% respectively. The treatments E1, E2, and E3 reduce more sperm abnormality level compared with BP, C1, C2, and C3. It means vitamin E can limit the occurrence of sperm damage by ROS, such as notice of Michael et al. (2008) that the addition 0.1 mM of vitamin E in canine sperm extender (yolk-tris glucose) can reduce ROS level.

In vitro storage treatment at temperature 4 °C for abnormalities of spermatozoa to various treatments showed significantly differences (P<0.05). Level of abnormality of each treatment in 0 hours was not significantly different, but after storage the abnormality level was rises. This is due to the occurrence of processes that cause lipid peroxidation, the formation of radicals lipid and lipid hydroperoxide, simultaneously causing a reaction among the radicals, cell dysfunction, decrease of membrane function and integrity (Sanocka and Kurpisz, 2004).

Eggs Fertility

The treatments BP, E1, E2, E3 tested by artificial insemination due to the better in vitro sperm quality than C1, C2, C3. The results of fertility percentage by artificial insemination can be seen in Table 6 below.

Table 6. Results of egg fertility percentage from artificial insemination with various extender treatments

<table>
<thead>
<tr>
<th>Extender</th>
<th>Replication</th>
<th>Mean ± SD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I</td>
<td>II</td>
</tr>
<tr>
<td>BP</td>
<td>93.80%</td>
<td>85.70%</td>
</tr>
<tr>
<td>E1</td>
<td>100.00%</td>
<td>75.00%</td>
</tr>
<tr>
<td>E2</td>
<td>100.00%</td>
<td>89.30%</td>
</tr>
<tr>
<td>E3</td>
<td>100.00%</td>
<td>90.00%</td>
</tr>
</tbody>
</table>
Treatment E2 had the highest fertility (93.10±5.98%) then alternately followed by E3, E1, and BP. Extender with vitamin E showed improvement of egg fertility. According to Blesbois et al. (1993) that addition of vitamin E 80 μg/mL in chicken sperm extender increase fertility which was stored at 4°C during twenty-four hours. The addition of 40 μg/mL vitamin E in turkey sperm also increase fertility (Long and Kramert, 2003).

LITERATURE CITED

