The 4th ASEAN Civil Engineering Conference

November 22-23, 2011 - Yogyakarta, Indonesia

Editors
Istiarto
Henricus Priyosulistyo
Budi Santoso Wignyosukarto
Sigit Priyanto

Organized by: AUN/SEED-Net
Supported by: JICA

PROCEEDINGS

The 4th ASEAN Civil Engineering Conference

Editors
Istiarto
Henricus Priyosulistyo
Budi Santoso Wignyosukarto
Sigit Priyanto

Organized by:
Department of Civil and Environmental Engineering, Universitas Gadjah Mada (CEE-UGM)
ASEAN University Network/Southeast Asia Engineering Education Development Network (AUN/SEED-Net)

Supported by:
Japan International Cooperation Agency (JICA)

November 22-23, 2011
Yogyakarta, Indonesia
The 4th ASEAN Civil Engineering Conference

Organized by: AUN/SEED-Net

Supported by: JICA

Editors
Istiaro
Henricus Priyosulistyto
Budi Santoso Wignyosukarto
Sigit Priyanto

Reviewers
Henricus Priyosulistyto
Hary Christady Hardiyatmo
Wanchai Teparaksa
Tanaka Hiroyuki
Sigit Priyanto
Nakatsuji Takashi
Sunjoto
Marilou Dalida
Budi Santoso Wignyosukarto
Iman Satyarno
Teuku Faisal Fathani

Published by:
Department of Civil and Environmental Engineering
Universitas Gadjah Mada, Yogyakarta, INDONESIA
Website: http://tsipil.ugm.ac.id
E-mail: jurusan@tsipil.ugm.ac.id
Tel: +62-274-545675
Fax: +62-274-545676

Copyright © 2011 by Department of Civil and Environmental Engineering, UGM

The texts of the papers in this volume were set individually by the authors or under their supervision. Only minor corrections to the text may have been carried out by the publisher. By submitting the paper in the 4th ASEAN Civil Engineering Conference, the authors agree that they are fully responsible to obtain all the written permission to reproduce figures, tables, and text from copyrighted material. The authors are also fully responsible to give sufficient credit included in the figures, legends or tables. The organizer of the conference, reviewers of the papers, editors, and the publisher of the proceedings are not responsible for any copyright infringements and the damage they may cause.
Committee of the 4th ASEAN Civil Engineering Conference

Scientific Committee

Prof. Henricus Priyosulisty (chairperson) (UGM/Structural Engineering)
Prof. Sunjoto (UGM/Environmental Engineering)
Prof. Sigit Priyanto (UGM/Transportation Engineering)
Prof. Budi Santoso Wignyosukarto (UGM/Hydraulics Engineering)
Prof. Iman Satyarno (UGM/Structural Engineering)
Assoc. Prof. Hary Christady Hardiyanatmo, (UGM/Geotechnical Engineering)
Prof. Dr. Sugiyama Takafumi (JSU-Hokkaido University/Structural Engineering)
Prof. Dr. Nakatsuji Takashi (JSU-Hokkaido University/Transportation Engineering)
Assoc. Prof. Dr. Tanaka Hiroki (JSU-Hokkaido University/Geotechnical Engineering)
Assoc. Prof. Dr. Takano Shin-ei (JSU-Hokkaido University/Construction Engineering and Management)
Assoc. Prof. Dr. Wanchai Teparaksa (CU/Geotechnical Engineering)
Asst. Prof. Dr. Anat Ruanggrassamee (CU/Structural Engineering)
Dr. Boonchai Sangpetngam (CU/Transportation Engineering)
Asst. Prof. Dr. Vachara Peansupap (CU/Construction Engineering and Management)
Prof. Dr. Guillermo Tabios (UP/Environmental Engineering)
Assoc. Prof. Dr. Maria Antonia Tanchuling (UP/Sanitation Engineering)
Assoc. Prof. Dr. Augustus Resurreccion (UP/Water Quality Management)
Asst. Prof. Dr. Marilou Dalida (UP/Wastewater Treatment and Management)
Asst. Prof. Dr. Ariel Blanco (UP/Water Quality Modelling and Management)

Organizing Committee

Dr. Istiarto (chairperson)
Dr. Ahmad Rifa’i
Dr. Teuku Faisal Fathani
Dr. Arief Setiawan Budi Nugroho
Dr. Ali Awaludin
Dr. Imam Muthohar
Dr. Ashar Saputra
Dr. Akhmad Aminullah
Arumdyah Widiati, M.Sc.
Intan Supraba, M.Sc.
PREFACE

The Department of Civil and Environmental Engineering, Universitas Gadjah Mada, in collaboration with AUN/SEED-Net, is proudly organizing the 4th ASEAN Civil Engineering Conference (ACEC) and the 4th ASEAN Environmental Engineering Conference (AEEC) in Yogyakarta on 22-23 November 2011 under the auspices of JICA. The joint conference provides forum for engineers and researchers in the region to collect and disseminate current issues in technology and researches in the field of civil and environmental engineering. The joint conference is part of a continuing series of regional conferences. Previous conferences were held in Thailand (1st ACEC, 2009) and The Philippines (1st AEEC, 2009), Laos (2nd ACEC, 2010) and Indonesia (2nd AEEC, 2009), and The Philippines (3rd ACEC and AEEC, 2010).

More than eighty papers from twelve countries (Brunei Darussalam, Cambodia, Indonesia, Iran, Japan, Laos, Malaysia, Myanmar, Philippines, Singapore, Thailand, and Vietnam) are presented in this joint conference. The papers are grouped in various topics, namely structural and material engineering, construction engineering and management, transportation engineering, geotechnical engineering, water resources engineering, disaster mitigation, green infrastructure, water quality and management, wastewater treatment, air quality management, climate change model, adaptation and mitigation, eco-hydraulics modeling. The papers are compiled in two volumes. This proceeding is the first volume containing paper topics related to civil engineering to be presented in ACEC, whereas the second volume groups paper topics related to environmental engineering to be presented in AEEC.

The organizing committee would like to extend its deepest gratitude to all participants who have contributed their papers and all parties involved throughout the conference without which this conference would not have been a success. The organizing committee wishes all participants a fruitful discussion during the conference and an enjoyable stay in Yogyakarta.

Yogyakarta, 22 November 2011

Dr. Istiarto
Chairperson of the Organizing Committee
TABLE OF CONTENTS

Preface

Keynote Papers

Mt. Merapi Disaster Risk and Thoughts on Its Sustainable Disaster Management
D. Legono ... 1

Lessons We Have Learned for the Last Decade through the Enactments of the Laws with Severe Punishments for Drivers under Influence of Alcohol
Takashi Nakatsuji .. 9

Structural Engineering

Influence of Water Absorption on Properties of AAC and CLC Lightweight Concrete Brick
Antoni, R. Jos, M. M. Lukito ... 15

Confinement Effects on High-Strength Concrete Columns Subjected Eccentric Loading
Antonis ... 21

Experimental Study of Mechanical Anchorage for Strengthening Bamboo Reinforced Concrete Beam-Column Joints
B. Sri Unniati, Sri Murni Dewi, Agoes Soehardjono M. D. 27

An Application of Pulley-Cable Element in Solving Form Finding Problem for Cable-Supported Structures
Dang Dang Tung, Nguyen Tung Thanh Binh ... 33

Studies and Rehabilitation Works on Sewu Temple World Heritage Site after Earth Quake Disaster of May 27th, 2006
Djoko Sulistyono .. 41

Properties of Environmentally-friendly Concrete Bricks under Different Curing Regimes
D. Hardjito, Antoni, A. A. Chandra, A. Pratomo .. 47

The Structural Dynamic Behavior of Building with Asymmetric Plan and Dilatation by Means of Microtremor Analysis (A Case Study on Dental Clinic Building of GMU)
Halisa, Henrikus Priyosulistyo ... 53

Application of Finite Element Model Updating in Damage Detection of Offshore Jacket Platforms Using Particle Swarm Optimization
H. Malekzehtab and A. A. Golaeshani ... 61

Development of Sustainable High Performance Grade 100 Concrete Incorporating Rice Husk Ash
H. B. Mahmud and S. Bahri .. 69

Flexural Strength of CFRP Box Beams with Different Laminate Structures
H. Sakuraba, T. Matsumoto, T. Hayashikawa .. 77
The Effect of Specific Gravity on Embedding Strength of Glued Laminated Bamboo
I. G. L. B. Eratodi, A. Triwiyono, T. A. Prayitno, A. Awuludin ... 85

The Application of Volcanic Ash and Sand from Merapi Volcano Eruption Debris for Cement Based
Building Materials
I. Satyarno, HRC. Priyosulistyoo, K. Tjokrodiniljo, A. Mujiburrohman, Y. Nurisa, A. Ilahi, P. Intani,
R. Kamandalu, E. T. Wahyuni .. 91

Starting Approximation for Newton-Raphson Iteration to Calculate the Neutral Axis Position of
Ghulam Bamboo
I. S. Irawati, Morisco, Bambang Suhendro, F. Mardjono, Ashar Saputra, T. Prayitno 99

Composite Column Force Transfer in Special Two-Story X-Braced Frames
Junaedi Utomo ... 107

Shear Analysis of T-section Hollow Core Reinforced Concrete Beams Using Nonlinear Finite
Element Method
K. S. Nur, Mustik, D. Sulistyoo .. 115

Development of Probabilistic Design Approach of Reinforced Concrete Structural Components
Kyaw Zeyer Win ... 123

Flexural Behavior Simulation of Wood Wool Cement Board Wall Panel Using Finite Element
Analysis
Mst. S., Mahzabin, R. Hamid, W. H. W. Badaruzzaman, Y. Khairullah ... 129

Shear Strength of HSSCC Deep Beams Reinforced with High Strength Steel (HSS) Bars: An
Experimental Investigation
Mohammad Mohammadhassani, Mohd Zamin Jumaat, Mohammed Jameel ... 133

Ultimate Strength Simulation of Hollow Reinforced High Strength Concrete Beam Under Pure
Torsion
R. Hamid, Y. Khairullah, Chiew S. Ing ... 139

A Correlation Study on Water Absorption and Compressive Strength of Compressed Stabilized Peat
Bricks
R. Hashim and S. Deboucha ... 145

Static and Seismic Load Simulation of Beam to Column Connections in Industrialized Building
System
S. A. Osman, N. N. Polinon ... 151

Compressive Strength of Concrete using Recycled Aggregate from Concrete and Masonry Debris
Sholihin As’ad, Endah Safitri ... 157

Structural Damage Detection Using Artificial Neural Networks and Finite Element Models
S. J. S. Hakim and H. Abdul Razak ... 165

Time Dependent Diffusion of Concrete Basing on Accelerated Chloride Migration Test
Tran Van Mien .. 171
Strength, Deformation and Elasticity of Masonry from Local Brick East-Java Indonesia
Wisnuwuri, S. M. Dewi, A. Soehardjono ... 177

Hydraulics & Hydrology

Integrated Use of Normalized Difference Vegetation Index and Terrestrial Water Storage Changes for an Improved RS-based Drought Monitoring System
A.M. Cruz and A. Blanco ... 183

Theoretical Approach Equilibrium Beach Profile behind Geotube As A Submerged Coastal Structure
C. Paotonan, N. Yuwono, R. Triatmadja, B. Triatmadjo ... 189

Development of a Web Based Paddy Irrigation Productivity Assessment – WEBPIPA for Rice Irrigation Water Supply Management
Deepak T. J., M. S. M. Amin, Rashid Shariff, Rahman Ramli, Venishri P. 197

Link between Snow Cover, Land Surface Temperature, and Rainfall Variability in the Upper Mekong
Hang Leakhena, Heng Suthy .. 201

Measurement of Longshore Current at Hydraulic Model Scale
H. Umair, R. S. Pranata, A. S. Pratama, N. Yuwono, R. Triatmadja, Nizam 209

Effect of Source-to-sensor Distance into Acoustic Wave Propagation in Reinforced Concrete Beam
N. Muhamad Bunnori ... 215

Developing Laboratory Experiment on Flow in an Erodible Curved Channel
Sumadi, Istiarto, B.A. Kironoto, D. Legono .. 223

Comparison of Recharge System Formulas from Point of View of Dimension Analysis, Mathematical Logic and Flow Condition
Sutjoto S. ... 227

Water Resources Potency in South West Sumba, East Nusa Tenggara
Trihono Kadri, Fennami Arpan, Dwi Prasetyo ... 235

An Automated Interpretation of Forecast Images for Rainfall Estimation
Tristan M. Basa, Paul Rosseren R. Regonia, Samantha F. Rachio, Prospero C. Naval Jr. .. 239

Soil Water Index Dynamics for the Identification of Initial Occurrence of Volcanic Deposit Instability
W. Wardoyo D. Legono, R. Jayadi, T. F. Fathani .. 243

Early Warning System for Water Level in Rivers
Y. Nukman, Z. A.Sarmad, M. Z. Harizam .. 251

Data Acquisition System of Air Bubbles in Steep Channel Flow
Y. Sutopo, Istiarto, B. Wignyosukarto, B. Yulistyanto .. 259
Transportation Engineering

Modelling Traffic Accident Occurrence at Purbaleunyi Toll Road – Indonesia using Generalised Poisson Regression Model
A. Kusumawati and L. A. Rakhmat ... 271

Review of Non-motorised Transport (NMT) and Public Transport Activities for Urban Transport Planning
Bibie Sara Salleh, Riza Atiq Abdullah O. K. Rahmat, Amiruddin Ismail ... 277

Decisions at the Beginning of Route Selection for Road Alignment
Deprizon Syamsunur, Amiruddin Ismail, Riza Atiq O. K. Rahmat, Othman Karim, Resdiansyah Mansyur .. 283

Acoustic Emission (Impact Echo) For Detecting Flaw in Transportation Infrastructure
Mochammad Sigit Darmosudiharjo, M. F. M. Zain .. 289

The Influence Of The Urban Transport System In Java On City Fuel Consumption
Mudjiastuti Handajani .. 295

Extending the Theory of Planned Behavior – Predicting the use of park-and-ride
Muhamad Nazri Borhan, Amiruddin Ismail, Riza Atiq Abdullah O. K. Rahmat .. 303

Determination of Important Factors on Sidewalks with Vendor Activities in Bangkok and Jakarta
Nursyamsu Hidayat, Kasem Choocharukul, Kunihiro Kishi .. 309

Identification and Characteristics of Urban Transportation System from Urban Planning Perspective
Omran Kohzadi Seifabad, Amiruddin Ismail, Samira Matinrad .. 317

Application of Artificial Intelligent in Transport Demand Management
Resdiansyah Mansyur, Riza Atiq O. K. Rahmat, Amiruddin Ismail .. 325

A Proposed Method for The Evaluation of The Asphalt Layers Moduli of Flexible Pavement on Low and Medium Strain Level
Sentot Hardwiyono, Mohd. Raihan Taha , Khairul Anuar Mohd. Nayan .. 333

Role of Walking in Access to and Egress from Transit Stations
Sony S. Wibowo .. 343

Determination of Location and Design for Urban Railway Station (Case: Yogyakarta – Magelang)
Distiana, S. Priyanto, H. Satomo, I. Mutohar .. 349

Route Alternative for Yogyakarta’s Railway Development: Design Choice and Possibilities
Safrilah, S. Priyanto, H. Satomo, I. Mutohar .. 357
Geotechnical Engineering

Characterization and Utilization of Volcanic Ash for Soil Stabilization
A. Rifa'1i .. 365

Determination of Potential Liquefaction in Yuan Lin Area, Taiwan
Kusumawardani, R. Satyarno, I. Suryolelono, K.B., Rifa'1i, A., Suhendro, B. 373

Determine the Alteration of Young’s Modulus of Soft Bangkok Clay behind Diaphragm Wall using Triaxial Test
Le Trong Nghia, Wanchai Teparaksa, Toshiyuki Mitachi, Takayuki Kawaguchi 379

Shear Strength Determination under Isotropic Condition of Tailings from Selected Mining Sites in the Philippines
M. Adajar, V. Lim, E. Uy, J. Uy ... 387

The Application of Pile Foundation System in the Construction of Ayeyawady Bridge (Pakokku)
Nang Su Le , Mya Thwin, Zaw Moe Lwin .. 395

Lessons Learned From The Land Subsidence Problem at Coastal Area in North Jakarta
Nani Setiawan .. 399

Measurement of Elastic Modulus Subgrade of Flexible Pavement Layers Using FWD and SASW Test Method

Apparent c’-intercept in Safety Factor Design of Slope Stability Analysis
S. Heng, T. Pipatpongsa, H. Ohta, C. Chhouk ... 415

Phnom Penh Subsoil Conditions using Groundwater Modeling System (GMS)
Suched Likitlersuang, Samphors Touchn ... 421

Strength Characteristics of Non-salt and Salt-rich Stabilized Dredged Soils
Thanh-Hai Do, Tuan-Anh Tran ... 427

Analysis of Failure of Cement Deep Mixing Wall System at HiepPhuoc Harbour in Ho Chi Minh City
Tuan-Anh Tran, Xuan-Loi Tran.. 433

Investigation into Pile Bearing Capacity Formulas in Vietnamese Pile Design Code in Comparison with PDA and Static Load Tests in South of Vietnam
Dinh Thanh Nguyen, Tuan Anh Tran .. 441

Thixotropic Hardening and Creep Behavior of Very Soft Clays
S. Seng, H. Tanaka ... 453

Construction Management

The Current Status of Safety Management and Factors Influencing Safety Management in The Cambodia Construction Site
J. Noppadon, T. Taniit, L. Bunhav .. 461

J. C. V. Reyes, V. Chovichien .. 469

Institutional Controls in the Views of State Regulators and Licensed Site Professionals

R. Tiyrattanachai, D. J. Watts .. 479
Soil Water Index Dynamics for the Identification of Initial Occurrence of Volcanic Deposit Instability

W. Wardoyo
Department of Civil Engineering, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia.

D. Legono, R. Jayadi, T. F. Fathani
Department of Civil and Environmental Engineering, Universitas Gadjah Mada, Yogyakarta, Indonesia.

Abstract: Several techniques have been introduced in order to monitor important parameters of disaster symptoms, and then utilizing them to develop necessary warning criteria. In case of Mt. Merapi disaster, where after the 2010 eruption the intensity of lahar flow occurrence increases significantly, such monitoring system is becoming very important. This is due to the fact that activity at the surrounding volcanic rivers is very intensive, in the form of both settlement at the surrounding rivers and the sediment mining activity in the rivers itself. Furthermore, in almost all cases of the development of early warning system, minimizing number of casualties or toll death has become main target. This paper presents the results of investigation on lahar flow warning criteria development through soil moisture monitoring activity at Gendol River of Mt. Merapi, before and after 2010 eruption confronted with some laboratory investigation. Correlation between the soil moisture dynamics and the initial occurrence of volcanic deposit instability are then presented. Analysis from relatively reliable data performs the goodness fit of the correlation between the aforesaid parameters.

Keywords: soil water index, warning criteria, deposit instability

1 INTRODUCTION

Soil water content is an important parameter on analyzing the soil movement. The ratio between water content or water volume and soil volume called as soil water index determines the driving and resisting force in such cross section area of soil. The composition of this driving and resisting force caused instability of soil layer. When in such cross-section of sediment block, the driving force greater than resisting force by increased water contents, the block will start moving immediately.

Soil water index is determined by physical characteristic of soil, topographical characteristic of surface, land covered, land used and characteristic of rainfall, but rainfall characteristic is the most important one. Some experts have already made researches to understand the relations between soil type, rainfall and soil water content and other factors, such as Farrar et.al., Dunkerley and Hunt et.al. Farrar et.al (1994) evaluated the influenced of soil type to the relation between vegetation formation, rainfall and soil moisture in semiarid Botswana. They concluded that each type of soil has difference response on generating soil moisture. Dunkerley (2001) calculated the infiltration rate and soil moisture in a grove mulga community. By this research, he concluded that infiltration rate and soil moisture is varied as a function of the mulga stem. Hunt et.al (2008) developed and evaluated the soil moisture index throughout Nebraska in the Automated Weather Data Network since 1999. They derived a Soil Moisture Index as a function of actual water content, field capacity and wilting point. It can be concluded that type of soil, land cover, vegetation formation and initial water content will influenced the soil water index.

The research of initial movement of deposited sediment in torrential area is categorized as high risk activity (Ishikawa and Yamada, 2001), therefore the installation and placement of each instrument should fulfilled security with respect to technical aspect and collecting data process. Therefore, the soil moisture sensor before the eruption, for example, was mounted at outer bank of the river on consideration of it. However, it should be more effort on interpreting data since the soil characteristic at outer bank and at river bed is quite different. This condition will of course have consequences on accuracy and process of analysis.

In case of creating and predicting critical line of volcanic deposit instability occurrence (initial movement of lahar flow) as part of early warning system, the soil index is known as one parameter to be used decoupling with rainfall intensity. Japanese experts create a guide lines or instruction to determine critical instruction of rainfall data setting for early warning and evacuation against debris flow disaster. This Guidance was formerly proposed by Ishikawa.
and Yamada (2001) that was built based on the debris flow occurrence data in Japan for more than twenty years. This guidance, then adopted by Ministry of Land, Infrastructure and Transport Japan (MLIT, 2004) as guidance for construction technology transfer on developing warning and evacuation system against sediment disasters in developing countries. This guidance introduces different parameter-pair on creating critical line of the occurrence of debris flow. The parameter pair is hourly intensity and working rainfall (Methods A), effective intensity and effective rainfall (Methods B) and intensity and soil index (Variance Method), as x and y axis respectively. The variance method, which the hourly intensity and Soil Index act as coordinate system, is applied on creating critical line of volcanic deposit instability for this paper.

Since the soil properties at the outer bank and river bed are quite different, the investigation of initial movement of sediment refers to a laboratory investigation doing by Fathani and Legono (2011). This is important stage of research in order to strengthen the understanding of deposit failure mechanism in non coverage soil. The main material for the laboratory investigation is taken from Merapi area. This on going model is conducting in Hydraulics Laboratory, Department of Civil & Environment Engineering, Universitas Gadjah Mada. The channel is 10.00 meter long, 1.50 meter width and 0.50 meter high with head tank at upper part of the channel. It is also equipped with Thompson type discharge measurement devices. The dam model was built is 40 cm height and 30 cm width of crest-weir with constant downstream slope inclination. The upstream slope inclination varies from 1:1 to 1:5. Beside three pieces of elevation gauge that are installed out of dam's body; some devices are mounted in the body of the dam, namely six pieces of soil moisture sensors, one piece of piezometric head and one piece of deformation detector. In order to understand the effect of upstream water to soil moisture, varied upstream water level from 10 cm up to 30 cm is simulated.

The rise of upstream water discharge and soil moisture will be recorded on data logger. Based on this data, the than the effect of the rising soil moisture to the initial occurrence of deposit instability will be analysis.

Fathani and Legono (2011) have already investigated the effect of upstream water level to the stability of earth dam. They evaluated the stability by simulating the rising rate of water level, slope inclination and material composing the dam body. It found that seepage discharge will increase as the upstream water level rises. It was explained that the hydraulic gradient is generated by the difference head of upstream and downstream water level so if the seepage discharge increase, then the seepage pressure and hydraulic gradient will also increase as well.

This seepage discharge occurring in every variation of slope inclination performed a linear relation. Refers to this condition it can be said that the seepage in such a dam is not affected by the upstream slope inclination and is linear to upstream water level. It was also concluded that in any model, the permeability coefficient will decline as water level in upstream of model rises. It misses the discussion in related with any soil index and instability of the dam. Therefore this running model investigated the relation of soil water content of dam body that is affected by variation of upstream water level.

2 FIELD INVESTIGATION

Two systems of instruments have already built refers to the time frame of eruptions (Figure 1 and Figure 2).

![Figure 1. Location of each instrument before eruption.](image-url)
The second one is built to replace the first, since it was totally destroyed due to Merapi eruption 2010. Both have similar concept and type of instruments to be installed: rainfall gauge, soil moisture sensor and garden-watch automatic camera; but the placement of each is rather different. Detail of type and amount of each instrument had been discussed by Wardoyo et. al. (2011), while both locations can be seen in Figure 2 and Figure 3. The main goals of these instruments installation are remained the same, namely to support early warning system in Merapi.

A tipping bucket rainfall gauge is used to measure rainfall intensity for short duration. It was set ten minutes for the first system and three minutes for the second one. A Time Domain Reflectometry (TDR) type sensor was used as soil moisture measurement devices and it is replaced by Cencera type sensor for the second term. The same type of automatic camera namely Brino garden-watch automatic cameras are used in both frame time.

Figure 2. Location of each instrument after eruption.

A non scale position of each type of devices near Kaliadem dam is presented in Figure 3. Three cameras were installed in this cross section, namely one for river bed sediment movement and two others for outer bank sediment movement. The position of these instruments installed in Jambu is presented in Figure 4.

Figure 3. Position of rainfall gauge, camera and soil moisture sensor in Gendol cross-section.

Figure 4. Position of rainfall gauge and soil moisture sensor at Jambu.

The position of rainfall gauge was chosen to fulfill the hydrological prerequisites. It should cover and represents upper part of Gendol catchments area and should be installed in open space. For the first term, the position of soil moisture measurement and camera as monitoring instrument of volcanic deposit instability at Gendol river bed is rather far away each other that leads to carefully calibration and verification stage due to lack of soil properties uniformity. It is not a big problem for the second stage, since the soil covered in study area is almost similar namely cooled pyroclastic material.
DATA COLLECTION AND ANALYSIS

For this analysis, the rainfall data is sufficient enough. These consist of ten (10) minutes observed interval data from 14th of January up to 24th September 2010 and three minutes interval data on certain dates as shown in Table 1, whilst Table 2 shows the data of soil data respectively. Table 3 shows the condition of flow in Gendol River. It was recorded by garden watch automatic camera that was installed in the side of inner river bank.

Table 1: Rainfall data

<table>
<thead>
<tr>
<th>Time range</th>
<th>Type of data</th>
</tr>
</thead>
<tbody>
<tr>
<td>14 January- 24 September</td>
<td>10 minutes interval</td>
</tr>
<tr>
<td>07 – 11 February 2011</td>
<td>3 minutes interval</td>
</tr>
<tr>
<td>26 February – 01 March</td>
<td>3 minutes interval</td>
</tr>
<tr>
<td>11 March – 18 March</td>
<td>3 minutes interval</td>
</tr>
<tr>
<td>23 March – 04 April</td>
<td>3 minutes interval</td>
</tr>
</tbody>
</table>

Table 2: Soil Moisture data

<table>
<thead>
<tr>
<th>Time range</th>
<th>Type of data</th>
</tr>
</thead>
<tbody>
<tr>
<td>14 January- 24 September ‘10</td>
<td>10 minutes interval</td>
</tr>
<tr>
<td>07 – 11 February 2011</td>
<td>3 minutes interval</td>
</tr>
<tr>
<td>26 February – 01 March</td>
<td>3 minutes interval</td>
</tr>
<tr>
<td>11 March – 18 March</td>
<td>3 minutes interval</td>
</tr>
<tr>
<td>23 March – 04 April</td>
<td>3 minutes interval</td>
</tr>
</tbody>
</table>

Table 3: Automatic Camera data

<table>
<thead>
<tr>
<th>Time</th>
<th>Descriptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan 14, at noon</td>
<td>Rainfall and caused morphological changes</td>
</tr>
<tr>
<td>Jan 16, 14:50 pm</td>
<td>Start raining</td>
</tr>
<tr>
<td>15:00 pm</td>
<td>Surface flow detected</td>
</tr>
<tr>
<td>15:25 pm</td>
<td>Sediment movement occurred</td>
</tr>
<tr>
<td>16:50 pm</td>
<td>No more surface flow</td>
</tr>
<tr>
<td>Jan 17, 17:15 pm</td>
<td>Start raining</td>
</tr>
<tr>
<td>18:05 pm</td>
<td>Surface flow detected</td>
</tr>
<tr>
<td>Jan 18, 05:25 am</td>
<td>Change of morphological conditions</td>
</tr>
<tr>
<td>Jan 20, 11:20 am</td>
<td>Start raining</td>
</tr>
<tr>
<td>12:00 am</td>
<td>Surface flow detected</td>
</tr>
<tr>
<td>12:25 pm</td>
<td>No more surface flow</td>
</tr>
<tr>
<td>13:35 pm</td>
<td>New surface flow detected</td>
</tr>
<tr>
<td>14:15 pm</td>
<td>Sediment movement occurred</td>
</tr>
<tr>
<td>Jan 21, 16:30-17:45</td>
<td>Surface flow detected</td>
</tr>
<tr>
<td>Jan 24, 13:55-14:30</td>
<td>Surface flow detected</td>
</tr>
<tr>
<td>Jan 26, 13:30-15:00</td>
<td>Surface flow detected</td>
</tr>
</tbody>
</table>

Example of river bed pictures are presented at Figure 5, 6 and Figure 7 respectively.
After getting data of rainfall and soil moisture, then this record are confronted with the occurrence not only the rainfall or surface flow but also the occurrence of sediment movement caught by the camera. These three types of data are then analyzed to figure out the influence of characteristic of soil indexes to initial occurrence of deposit instability. The diagram of analysis methods is shown by Figure 8.

Figure 8. Diagram procedure of data analysis.

In order to make the analysis easier, the Duration of rainfall is grouped as Short Duration (SD), Medium Duration (MD) and Long Duration (LD), while the intensity is categorized in three group as well, namely Low Intensity (LI), Medium Intensity (MI) and High Intensity (HI). In the first step, four category of rainfall pattern are chosen to be analyzed: Rainfall with Long Duration – Low Intensity (LDLI), Medium Duration – Medium Intensity (MDMI), Medium Duration – High Intensity (MDHI) and rainfall with Long Duration – High Intensity (LDHI). It seems that each category has different effect to soil moisture rate. The 1st category represented by rainfall data on 21st of January 2011 along 230 minutes with no intensity highest than 24 mm/hour, while the 2nd represented by rainfall data of 18th January 2011. The 3rd was taken from rainfall data on 20th of January, while 4th represented by rainfall data on 30th of January along 140 minutes with 6 data highest than 24 mm/hour.

Further if the soil moisture data confronting with captured condition of river bed, it could be concluded that the generating of free surface flow or of initial sediment movement is strongly affected by soil moisture condition. By soil moisture at the outer bank > 0.350, free surface flow in the river can be detected. If the rainfall is still ongoing and the soil moisture rises, it will affect the initiation of soil movement. This process is suitable with Takahashi theory (1980, 1991).

Figure 9. Relation between rainfall intensity and soil index of each category of rainfall pattern.

Figure 10 figures out the time series of rainfall and its effect to the soil moisture. It shows that the both pattern are similar but by analyzing the soil moisture data, it was found that the rainfall intensity correlates to the soil moisture with time lag around 1 hour.
4. CONCLUSIONS

The sensitivity and level of accuracy of soil moisture sensor plays important role on withdrawing a good conclusions. In case of soil moisture sensor which was installed before eruption, the conclusion was easier to be done since the data was available continuously. By exploring difference pattern of rainfall, it can be concluded that, neither free surface flow nor initial movement of deposit sediment could be generated by any single high rainfall intensity. It needs quite long rainfall duration with sufficient intensity to trigger the initial movement.

The evaluation of the sensor respond to the rainfall should be calculated carefully with respect to the distance between rainfall gauge to the sensor, land coverage and topographical conditions. Although the sensor was only 20 meter away bellow the rainfall gauge but since the outer bank was covered by dense grass, the responds of rainfall to the sensor was found six time intervals later. That means, there are 1 hour lag between rainfall data and upper sensor. This can be concluded that the water pathway at subsurface plays an important role as well. Therefore, further research about lag time should be done intensively.

By analyzing each category of rainfall pattern, it can be concluded that not only the duration of rainfall but also the sequence of rainfall show similar pattern to water index. Both parameters affect the soil water index and these determine the instability of deposit.

By confronting the soil moisture data and river bed condition that was captured by camera, it can be concluded that the surface flow will appear when the soil moisture in outer bank greater than 0.35% and initial movement will happen when the soil moisture is above 36%.

ACKNOWLEDGMENTS

We gratefully acknowledge Prof. Masaharu Fujita and Dr. Daizo Tsutsumi of DPRI-Kyoto University for providing some monitoring instruments and giving the authors the chance to have a fruitful discussion on the initiation of lahars flow. We also thank Mr. Irawan Eko Prabowo of Universitas Gadjah Mada for assisting the installation and operation of the monitoring systems.

REFERENCES

Takahashi, T., (1980). "Debris Flow on Prismatic Open Channel", ASCE J. Hydraulics Division, 104(HY8),361-369
