The 6th ISTAP
International Seminar
on Tropical Animal Production

“Integrated Approach in Developing Sustainable Tropical Animal Production”

PROCEEDINGS

October 20-22, 2015
Yogyakarta Indonesia

ISBN: 978-979-1215-26-8

Published by:
Faculty of Animal Science, Universitas Gadjah Mada Yogyakarta, Indonesia, 2015
Editor-in-Chief

Cuk Tri Noviandi
(Universitas Gadjah Mada, Indonesia)

Editorial Board

Subur Priyono Sasmito Budhi (Universitas Gadjah Mada, Indonesia)
Zaenal Bachruddin (Universitas Gadjah Mada, Indonesia)
Ristianto Utomo (Universitas Gadjah Mada, Indonesia)
Widodo (Universitas Gadjah Mada, Indonesia)
Soeparno (Universitas Gadjah Mada, Indonesia)
Yuny Erwanoto (Universitas Gadjah Mada, Indonesia)
Adiarto (Universitas Gadjah Mada, Indonesia)
Ismaya (Universitas Gadjah Mada, Indonesia)
Tety Hartatik (Universitas Gadjah Mada, Indonesia)
Wihandoyo (Universitas Gadjah Mada, Indonesia)
Endang Baliarti (Universitas Gadjah Mada, Indonesia)
Krishna Agung Santosa (Universitas Gadjah Mada, Indonesia)
Sudi Nurtini (Universitas Gadjah Mada, Indonesia)
Budi Gunarto (Universitas Gadjah Mada, Indonesia)
Nanung Danar Dono (Universitas Gadjah Mada, Indonesia)
Zuprizal (Universitas Gadjah Mada, Indonesia)
Keshav L. Maharjan (Hiroshima University, Japan)
Henning Otte Hansen (University of Copenhagen, Denmark)
Yukinori Yoshimura (Hiroshima University, Japan)
Allen Young (Utah State University, USA)
Yanin Opatpatanakit (Maejo University, Thailand)

Editorial Staff

Rima Amalia EW, Prisilia Putri S, Miftahush S Haq, Septi Mulatmi,
Aditya Alqamal, Riyans Nugroho A, Pradipta AH, Satyaguna R,
Zefanya AG, Bagas Pamungkas
LIST OF CONTENTS

PREFACE .. iii
REPORT FROM ORGANIZING COMMITTEE .. iv
WELCOME ADDRESS ... v
OPENING REMARKS .. vi
LIST OF CONTENTS ... vii

PLENARY SESSION

1. Strategies to Increase the Domestic Production of Raw Milk in Indonesia and Other South East Asian Countries
 John Moran and Phillip Morey ... 1-11

2. Nutritional Challenges of Lactating Dairy Cattle in a Tropical Climate
 J. K. Bernard ... 12-17

3. Feed, Land, and Landscape for Sustainable Animal Production
 Shaukat A. Abdulrazak a and Isaac M. Osugab ... 18-18

4. Food Safety Regulation and Halal Food Issues in Indonesia
 Ray Sparrinaga .. 19-19

5. Extension System for Livestock Development in Developing Countries:
 Knowledge Management Application
 BudiGuntoro ... 20-27

6. Structural Development of Livestock Farms in a Global Perspective
 Henning Otte Hansen .. 28-50

7. Whole Farm Problems with Heat Stress – It’s Not Just for Lactating Dairy Cows
 Allen Young .. 51-57

LEAD PAPER

1. Antimicrobial Peptides Expression for Defense System in Chicken Gastrointestinal and Reproductive Organs
 Yukinori Yoshimura, Bambang Artyadi, and Naoki Isobe 58-60

2. Improving Technology Adoption and Sustainability of Programs to Increase Bali Cattle Productivity in West Nusa Tenggara Province, Indonesia
 Yusuf A. Sutaryono, T. Panjaitan, and Dahaanuddin 61-66

3. The Role of Family Poultry Systems in Tropical Countries
 Yusuf L. Henuk, Monchai Duangjinda, and Chris A. Bailey 67-71
SUPPORTING PAPERS

Part I

Animal Feed and Nutrition

1. NM-03-P The Marl and Kaolin in Broiler Diet: Effects on the Bone Weight and the Cutting Yield
 D. Ouachem, A. Meredef, and N. Kaboul ... 72-75

2. NM-04-P The Effect of Liquid Nanocapsule Level on Broiler Fat Quality
 Andri Kusmayadi, Zuprizal, Supadmo, Nanung Danar Dono, Tri Yuwanta, Ari Kusuma Wati, Ronny Martien, Sundari ... 76-79

3. NM-05-O Production and Egg Quality of Quail Layer Given Diets Containing Different Levels of Crab (Portunus pelagicus) by-Product Meal
 K.G. Wiryawan, Syamsuahdi, D.K. Purnamasari, and T.S. Binetra .. 80-84

4. NM-08-P A Preliminary Study on the Use of Enzyme and Organic Acids in Rice Bran-containing Diet at Two Levels of Dietary Protein for Rabbit
 Tuti Haryati and Yono C. Raharjo .. 85-89

5. NM-09-O Efficacy of Toxin Binder in Reducing Induced Aflatoxin B and Ochratoxin A in Broiler Feed
 Anjum Khalique, Muhammad Umer Zahid, Jibran Hussain, Zahid Rasool ... 90-93

6. NM-10-O Evaluation of Local Feed in Broiler Diets in Small Scale Farm in Palu Central Sulawesi

7. NM-11-O Digestibility and Nutritional Value of Gedi (Abeimoschus manihot (L.) Medik) Leaves Meal in the Diet of Broilers
 Jet Saartje Mandey, Hendrawan Soetanto, Osfar Sjofjan, Bernat Tulung .. 100-104

8. NM-12-O Utilization of Skipjack Tuna (Katsuwonus pelamis L.) Gill in Diet as a Source of Protein on Carcass Quality of Broiler Chickens
 Jen Rinny Leke, Jet S. Mandey, Meity Sompie, Fenny R. Wolayan ... 105-109

9. NM-13-O The Dynamics of Indigenous Probiotics Lactic Acid Bacteria on Growth Performance, Total Adherence Bacteria, and Short-Chain Fatty Acids Production in the Ileum of Male Quail
 Sri Harimurti, Sri Sudaryati and Bambang Ariyadi 110-110
19. NR-05-O Daily Body Weight Gain of Bali Cattle Fed with Leucaena Leucocephala as the Main Ration in West Timor, East Nusa Tenggara, Indonesia
 Jacob Nulik and Debora Kana Hau..147-150

20. NR-06-O Tannin Anthelmintic Doses, Metabolizable Energy and Undegraded Protein Contents of Rubber Leaves (Hevea brasiliensis) as Herbal Nutrition for Goats
 Sri Wigati, Maksudi Maksudi, Abdul Latief and Eko Wiyanto ...151-155

21. NR-07-P Consumption and Digestibility of Nutrients in Bali Cattle at the Last Period of Pregnancy Kept under Semi Intensive System Supplemented with Nutritive Rich Feed Contained Lermuru Oil and Zinc
 Erna Hartati, E.D. Sulistijo, A. Saleh.......................................156-160

22. NR-08-P Preliminary Screening for Anthelmintic Potential of Sesbania grandiflora Leaves for Parasitic Infected Goats in Short-Term Trial
 Mohd Azrul Lokman, Kanokporn Phetdee, Sathaporn Jittapalapong and Somkiert Prasanpanich...161-165

23. NR-09-O The Effect of Urea Treated Straws and Urea-Molasses Feed Blocks (UMB) on Reproductive Performance of Libyan Barbary Sheep
 Mabruk, H.S., H. A. Salim, A. E. Benshaban, A.E. Ahtash, H.E. Dacky and Z.N. Elmeshabic...166-172

25. NR-11-O Chemical Composition, Antioxidant Compounds and Antioxidant Capacity of Ensilaged Coffee Pulp

26. NR-12-O Influence of Starch Type as Substrate Material in Dry Lactic Acid Bacteria Inoculant Preparation on Fermentation Quality and Nutrient Digestibility of King Grass Silage
 B. Santoso, B. Tj. Hariadi and Jeni...182-186

27. NR-13-O Responses of Growing-Female Crossbred Ettawa Goats Fed Concentrates Containing by product of Traditional Fried Snack Industry with Different Levels of Urea
 A.R. S. Asih, K C. Wiryawan, I. N. Sadia, and Kertanegara...........187-190
131. SK-12-P Potential and Opportunities of Livestock Development in 24 Locations PSDK Assistance of BPTP Support for Food Security
Titim Rahmawati and Yoshi Tri Sulistyaningsih..........................668-672

132. SK-13-O Cattle Farmer’s Characteristics In West Timor (Case Study on Nekmese Farmers Group, Usapinonot, North Central Timor, Nusa Tenggara Timur)
Paulus Klau Tahuk, Endang Baliarti, Subur Priyono Sasmito Budhi and Panjono...673-677

133. SK-15-P Estimation of the Peranakan Ongole Cattle Output in Klorong, Kebumen, Central of Java

Animal Products Technology

134. TD-01-O Effects of Hibiscus sabdariffa and Schleichera oleosa Liquid Smoke on Lipid Content, Lipid Oxidation and Residual Nitrite in Se’i (Rotenese Smoked Beef)
Gemini E.M. Malelak, I.G.N. Jelantik, Maria R. Denoratu, Geertruida M Sipahelut, I.G.N. Jelantik..683-687

135. TD-02-O Chemical Composition and Antioxidative Potential of Chicken Sausage with Substitution of Tempe
Jamhari, Yuny Erwanto, Listia Kusumasari Nurhanifah...............688-692

136. TD-04-O In Vitro Antioxidant Activity of Beef Lung Protein Hydrolysates
Khothibul Umam Al Awwaly, Suharjono Triatmojo, Wayan T. Artama, Yuny Erwanto...693-693

137. TD-05-O Carcass Production and Chevon Quality of Kacang Buck Reared Traditionally in Grobogan, Central Java, Indonesia
Retno Adiwinarti, I Gede Suparta Budisatria, Kustantinah, Rusman...694-698

138. TD-06-O Fraud Identification in Meatballs Product Using Porcine Detection KIT and Multiplex Polymerase Chain Reaction Methods
Tridjoko Murti, Christina Admantin, Umar Santoso, Dyah Widiasih, Aris Haryanto..699-703

139. TD-07-O Identification of Dog Meat Species by Polymerase Chain Reaction (PCR)
Dyah Ayu Widiasih, Cynthia Debbi Ratnasari, Yatri Drastini, Tridjoko Wisnu Murti..6704-708

140. TD-08-O Study on the Physico-Chemical Characteristics and Microstructure of Meat from Goat Given Ration Papaya Leaves (Carica papaya L.)
Muh. Ickshan Haris, Soeparno, Umar Santoso, Rusman........709-713

xxi
Output Estimation of Ongole Crossbred Cattle Breeding in Klorong, Kebumen, Central Java

Sumadi¹, N. Ngadyono², D.T. Widayati³, C. T. Noviandi⁴

1 Faculty of Animal Science, Gadjah Mada University
corresponding email: profsumadi@yahoo.co.id

ABSTRACT: This research aims to identify the location of the source of beef cattle, calculate the Natural Increase (NI) and determine the output of Ongole cross breed cattle in Klorong, Kebumen, Central Java. The village used in the study Jeruk Agung, Pandan Lor and Kedung Sari. The material used in this study is a questionnaire for local government and farmer. Respondents used in the study of 230 people is composed of Jeruk Agung village as many as 50 people, the village of Kedung Sari 77 people and the villages of Pandan Lor 103 people. Natural Increase (NI) PO cattle in Klorong district of Kebumen 2015 was 51.95%, respectively with males and females of 27.93% and 24.02%. The result of output estimation for PO cattle in district of Klorong for male culled cattle was 20.41% and female culled cattle was 23.79% of the population while the magnitude of the output estimation of male replacement cattle was 66.86% and female replacement cattle was 48.4% of the population.

Keywords: Output, Natural Increase, Peranakan Ongole (PO), Kebumen

INTRODUCTION

One of national assets animal husbandry from Klorong Subdistrict Kebumen Region that has big potential can be developed is Ongole crossbred cattle. Ongole crossbred cattle breeding is crucial matter to support cattle beef industry, however until now animal breeding necessary not only quantity but also quality is not yet enough were provided by local production. Availability of information about reproduction performance is needed to know the potential area for breeding cattle resource. Potential or output Ongole crossbred cattle is the amount of cattle that can be taken out to other area or slaughtered in certain area without disturbing cattle population balance.

MATERIALS AND METHODS

This research was conducted on January 2015 in Klorong Subdistrict, Kebumen Region, Central Java. The Villages was used in this research as follows Jeruk Agung, Pandan Lor, and Kedung Sari.

MATERIALS

Materials that was used in this research as follows questionaries for government and farmers. Respondent which used in this research was 230 persons consist of Jeruk Agung Village 50 persons, Kedung Sari Village 77 persons, and Pandan Lor Village 103 persons.
METHODS

Implementation of Subdistrict animal breeding potential was did by using census method with used appropriate methods on the field, and used appropriate sampel which related to the research methode. It was choose 3 representative villages by sampling quota on Klirong Subdistrict, Kebumen Region. Furthermore each farmer in the choosen village acted as respondence then censused by questionaries and variable observed include farmer identity, the aim of rearing, the motivation of rearing, cattle ownership, production organize, mutation, rearing system. Secondary data was collected from related instance on the research place, included animal statistic. According to breeding theory approach, that was analized cattle output from an area furthermore determined availability of cattle breed and cattle to be fattened.

RESEARCH DESIGN

Collected data was tabulated corresponding with needs and then analyzied
1. farmer identity was analyzed with counting average percentage deviation standard and then shows in table.
2. Cattle identity was analyzed by calculate average percentage and deviation standard then made it in table and resulted technical coefficient which used to calculate NI, NRR, and potential (output) in an area.
3. Natural Increase (NI) is calving rate to population in one year minus death percentage of cattle to population in one year.
4. Net Replacement Rate (NRR) is female calf total which is born and be expected to live in certain age, devided with necessity total of dam replacement annually, multiplied 100%; or is male calf total which is born and be expected to live in certain age, devided with necessity total of sire replacement annually, multiplied 100%.
5. Potential (output) of beef cattle from an area is the amount of beef cattle which can be drop out for send to other area without disturbing population balance of cattle. Output consist of young male and female animal which the amount is same with NI residual that have been minus total replacement necessity.
6. Population development of beef cattle in five years ago was needed for estimated population average increase every year.
7. Source breeding area is an area that fostered as breeding provider for other area namely by criteria as follow.
 a. Beef cattle population pretty much.
 b. Number of cattle slaughtered is increase, or at least not decrease.
 c. NRR more than 100%
 d. Body size of cattle in certain age fulfill certain body size standard (for male cattle is about 10% from cattle availability and for female cattle is about 90% from availability).

RESULT AND DISCUSSION

Natural Increase (NI)

Average of Natural Increase (NI) of Ongole crossbred cattle in Klirong Subdistrict on 2015 according to Table 6 can bee seen 51.95% with Male and female NI respectively 27.93% and 24.02%. the value of NI in this research was higher than previous research by Tonbesi et al.
(2009) and Sumadi et al. (2007) respectively 21.72% and 46.68±9.16. The height of NI value was caused by the height of birth rate compared with death rate. Many factors were affected such as birth percentage to population, comparison between mature male and female cattle and death rate (Sumadi et al., 2004).

Net Replacement Rate (NRR)

NRR value of male Ongole crossbred cattle was 637.77% and female 355.85%, its mean the stock of replacement male cattle as many as 6.37 times of necessity, replacement female cattle as many as 3.55 times of necessity, in other words the stock of male and female cattle in Klirong Subdistrict was sufficient. This research indicated that surveyed area can provide the candidate male and female replacement cattle without importing cattle replacement from other area. The animal population was declared surplus if NRR value more than 100% and population drained if NRR value less than 100% (Hardjosopharto, 1994).

Output

Table 1. Potential or Output of Ongole Crossbred cattle in Klirong Subdistrict Kebumen Region on 2015

<table>
<thead>
<tr>
<th>No.</th>
<th>Variable</th>
<th>Pandan Lor (%)</th>
<th>Jeruk Agung (%)</th>
<th>Kedung Sari (%)</th>
<th>Kecamatan (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Culled cattle</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a.</td>
<td>Sire</td>
<td>23.53</td>
<td>16.00</td>
<td>12.82</td>
<td>5.00</td>
</tr>
<tr>
<td>b.</td>
<td>Dam</td>
<td>11.76</td>
<td>8.00</td>
<td>20.51</td>
<td>8.00</td>
</tr>
<tr>
<td></td>
<td>Total Residual</td>
<td>35.29</td>
<td>24.00</td>
<td>33.33</td>
<td>13.00</td>
</tr>
<tr>
<td>2.</td>
<td>Replacement</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a.</td>
<td>Sire</td>
<td>32.35</td>
<td>22.00</td>
<td>46.15</td>
<td>18.00</td>
</tr>
<tr>
<td>b.</td>
<td>Dam</td>
<td>32.35</td>
<td>22.00</td>
<td>20.51</td>
<td>8.00</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>64.71</td>
<td>44.00</td>
<td>66.67</td>
<td>26.00</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>100.00</td>
<td>68.00</td>
<td>100.00</td>
<td>39.00</td>
</tr>
</tbody>
</table>

According to the table 8 total output of Ongole crossbred cattle for culled male 12.72% and female 23.79% totally 26.01% of population. Male replacement cattle was 41.04% and female 32.95% of population. The highest output of male culled Ongole crossbred cattle was in Pandan Lor Village as many as 23.53% whereas the lowest output was happened in Kedung Sari Village 1.52%. The highest output of female culled Ongole crossbred cattle was in Jeruk Agung Village 20.51% and the lowest output was happened in Kedung Sari Village as many as 10.61%. The highest output of replacement male Ongole crossbred cattle was in Pandan Lor Village as many as 46.97% and the lowest output was happened in Pandan Lor Village as many as 20.51%. Total percentage of the highest whole output was in Pandan Lor Village as many as 64.71% and the lowest output was happenend in Jeruk Agung Village as many as 39.00%. Generally the number of estimation replacement cattle output percentage was higher than percentage of culled cattle. This case related to the huge number of necessity and replacement cattle stock. Total stock of replacement cattle was higher than necessity of replacement cattle so that why remainder of replacement cattle can be exported (Sumadi, 1999).
Population Dynamics

Based on equation of line regression \(Y = 213.5X + 5434\) resulted of time series analysis data from 2010 until 2014, it can be estimated that cattle population on 2015 until 2019 as follows on table 2, with technical coefficient estimation is constant.

Table 2. Population Development Estimation of Ongole crossbred cattle in Kloriong Subdistrict Kebumen Region on 2015 until 2019

<table>
<thead>
<tr>
<th>Year</th>
<th>Population</th>
<th>Increase (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015</td>
<td>6075</td>
<td>19.61</td>
</tr>
<tr>
<td>2016</td>
<td>6288</td>
<td>3.50</td>
</tr>
<tr>
<td>2017</td>
<td>6502</td>
<td>3.40</td>
</tr>
<tr>
<td>2018</td>
<td>6715</td>
<td>3.28</td>
</tr>
<tr>
<td>2019</td>
<td>6929</td>
<td>3.19</td>
</tr>
</tbody>
</table>

It will happen if technical coefficient is constant. Based on data which was shown in Table 2 and 3 can be estimated the output of Ongole crossbred cattle from 2014 until 2019 as follows.

Table 3. Potential estimation or Output of Ongole crossbred cattle in Kloriong Subdistrict Kebumen Region on 2014 until 2019

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Culled cattle</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>a. Sire</td>
<td>20.41</td>
<td>68</td>
<td>1240</td>
<td>1283</td>
<td>1327</td>
<td>1371</td>
</tr>
<tr>
<td></td>
<td>b. Dam</td>
<td>23.79</td>
<td>79</td>
<td>1445</td>
<td>1496</td>
<td>1547</td>
<td>1597</td>
</tr>
<tr>
<td>2.</td>
<td>Replacement Residual</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>a. Sire</td>
<td>66.86</td>
<td>223</td>
<td>4062</td>
<td>4204</td>
<td>4347</td>
<td>4490</td>
</tr>
<tr>
<td></td>
<td>b. Dam</td>
<td>48.40</td>
<td>161</td>
<td>2940</td>
<td>3043</td>
<td>3147</td>
<td>3250</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>115.26</td>
<td>384</td>
<td>7002</td>
<td>7248</td>
<td>7494</td>
<td>7740</td>
</tr>
</tbody>
</table>

The result calculation of output estimation Ongole crossbred cattle in Kebumen Region (Table 3) indicated output estimation of culled sire Ongole crossbred cattle on 2015 until 2019 respectively 1240, 1283, 1327, 1371 and 1414 cattle. Output estimation of culled dam Ongole crossbred cattle respectively 1445, 1496, 1547, 1597 and 1648. The result of output estimation from residual replacement was higher from young male cattle respectively 4062, 4204, 4347, 4490 and 4633 cattle. The output estimation dam replacement respectively 2940, 3043, 3147, 3250 and 3354 cattle. The amount of estimation value output from residual replacement compared with culled cattle related to the amount of total necessity and replacement stock. The availability replacement stock was higher than replacement stock necessity so that residual of replacement stock can be release in huge number. The residual of replacement stock can be released to other area for replacement stock in that area (Sumadi, 1999).
CONCLUSION AND SUGGESTION

Conclusion
The result of output estimation of Ongole crossbred cattle on Klirong Subdistrict for culled male cattle was 20.41% and culled female cattle was 23.79% from population whereas output estimation of sire replacement was 66.86% and dam replacement was 48.4% to population. The factors that affected the amount of output such as necessity and availability replacement stock. Klirong Subdistrict Kebumen Region was resource area of Ongole crossbred cattle (Kebumen) breed.

Suggestion
It is needed to do further research about potential estimation of Ongole crossbred cattle in Kebumen Region with larger area and covers all area in Kebumen Region.

REFERENCES

POTENTIAL ESTIMATION OF ONGOLE CROSSBRED CATTLE BREEDING IN KLIORMG, KEBUMEN, CENTRAL JAVA

Sumadi, N. Ngadityonoz, D.T. Widayati, C.T. Novianti
1234 Faculty of Animal Science, Gadjah Mada University
profsamadi@yahoo.com.id

INTRODUCTION

One of national assets animal husbandry from Kliormg Subdistrict Kebumen Region that has big potential can be develop is Ongole crossbred cattle. Ongole crossbred cattle breeding is crucial matter to support cattle beef industry, however until now animal breeding necessary not only quantity but also quality is not yet enough were provided by local production. Availability of information about reproduction performance is needed to know the potential area for breeding cattle resource. Potential or output Ongole crossbred cattle is the amount of cattle that can be taken out to other area or slaughtered in certain area without disturbing cattle population balance.

MATERIALS AND METHODS

This research was conducted on January 2015 in Kliormg Subdistrict, Kebumen Region, Central Java. The villages were used in this research as follows Jeruk Agung, Pandan Lor, and Kedung Sari.

MATERIALS

Materials that was used in this research is follows for questionnaire for government and farmers. Respondent which used in this research is 230 persons consist of Jeruk Agung Village 50 persons, Kedung Sari Village 77 persons, and Pandan Lor Village 103 persons.

METHODS

Implementation of Subdistrict animal breeding potential was did by using census method with used appropriate methods on the field, and used appropriate sampel which related to the research methods. It was choose 3 representative villages by sampling quota on Kliormg Subdistrict, Kebumen Region.

RESULT AND DISCUSSION

Table 1. Net Replacement Rate (NRR) sapi PO di Kecamatan Kliormg Kabupaten Kebumen tahun 2015

<table>
<thead>
<tr>
<th>No.</th>
<th>Variable</th>
<th>Pandan Lor</th>
<th>Jeruk Agung</th>
<th>Kedung Sari</th>
<th>Kecamatan</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Size</td>
<td>11.60</td>
<td>7.78</td>
<td>1.03</td>
<td>1.40</td>
</tr>
<tr>
<td></td>
<td>a. Replacement necessity (%)</td>
<td>11.60</td>
<td>7.78</td>
<td>1.03</td>
<td>1.40</td>
</tr>
<tr>
<td></td>
<td>b. Availability (%)</td>
<td>28.36</td>
<td>34.85</td>
<td>24.06</td>
<td>27.93</td>
</tr>
<tr>
<td></td>
<td>c. NRR (%)</td>
<td>214.68</td>
<td>447.94</td>
<td>2353.52</td>
<td>637.77</td>
</tr>
<tr>
<td>2</td>
<td>Dam</td>
<td>6.12</td>
<td>12.57</td>
<td>5.30</td>
<td>6.75</td>
</tr>
<tr>
<td></td>
<td>a. Replacement necessity (%)</td>
<td>6.12</td>
<td>12.57</td>
<td>5.30</td>
<td>6.75</td>
</tr>
<tr>
<td></td>
<td>b. Availability (%)</td>
<td>22.39</td>
<td>24.24</td>
<td>25.56</td>
<td>24.02</td>
</tr>
<tr>
<td></td>
<td>c. NRR (%)</td>
<td>356.84</td>
<td>192.44</td>
<td>301.17</td>
<td>373.87</td>
</tr>
</tbody>
</table>

Table 1 shown that NRR value of male Ongole crossbred cattle was 637.77% and female 356.85%, its mean the stock of replacement male cattle as many as 6.37 times of necessity, replacement female cattle as many as 3.55 times of necessity, in other words the stock of male and female cattle in Kliormg Subdistrict was sufficient. This research indicated that surveyed area can provide the candidate male and female replacement cattle without importing cattle replacement from other area. The animal population was declared surplus if NRR value more than 100% and population drained if NRR value less than 100% (Hardjosubroto, 1994).

Table 2. Potential or Output of Ongole Crossbred cattle in Kliormg Subdistrict Kebumen Region on 2015

<table>
<thead>
<tr>
<th>No.</th>
<th>Variable</th>
<th>Pandan Lor</th>
<th>Jeruk Agung</th>
<th>Kedung Sari</th>
<th>Kecamatan</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cattle</td>
<td>23.93</td>
<td>15.68</td>
<td>12.82</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>a. Beef</td>
<td>11.36</td>
<td>8.00</td>
<td>10.51</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>b. Beef</td>
<td>12.57</td>
<td>7.68</td>
<td>2.31</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>c. Beef</td>
<td>21.25</td>
<td>18.00</td>
<td>10.40</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>35.75</td>
<td>23.68</td>
<td>13.13</td>
<td>1.00</td>
</tr>
<tr>
<td>2</td>
<td>Replacement</td>
<td>32.02</td>
<td>20.00</td>
<td>18.00</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>a. NRR</td>
<td>11.35</td>
<td>12.00</td>
<td>20.00</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>b. NRR</td>
<td>21.35</td>
<td>20.00</td>
<td>30.00</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>c. NRR</td>
<td>35.05</td>
<td>40.00</td>
<td>50.00</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>100.00</td>
<td>100.00</td>
<td>100.00</td>
<td>100.00</td>
</tr>
</tbody>
</table>

According to the Table 2 total output of Ongole crossbred cattle for culled male 12.7% and female 23.7% totally 26.4% of population. Male replacement cattle was 41.0% and female 32.95% of population. The highest output of male culled Ongole crossbred cattle was in Pandan Lor Village as many as 23.53% whereas the lowest output was happened in Kedung Sari Village 1.52%. The highest output of female culled Ongole crossbred cattle was in Jeruk Agung Village 20.51% and the lowest output was happened in Kedung Sari Village as many as 10.61%. The highest output of replacement male Ongole crossbred cattle was in Pandan Lor Village as many as 46.97% and the lowest output was happened in Pandan Lor Village as many as 20.61%. Total percentage of the highest whole output was in Pandan Lor Village as many as 64.71% and the lowest output was happenend in Jeruk Agung Village as many as 39.00%. Generally the number of estimation replacement cattle output percentage was higher than percentage of culled cattle. This case related to the huge number of necessity and replacement cattle stock. Total stock of replacement cattle was higher than necessity of replacement cattle so that why remainder of replacement cattle can be exported (Sumadi, 1999).

CONCLUSIONS

The result of output estimation of Ongole crossbred cattle on Kliormg Subdistrict for culled male cattle was 20.41% and culled female cattle was 23.79% from population whereas output estimation of sire replacement was 66.86% and dam replacement was 48.4% to population. The factors that affected the amount of output such as necessity and availability replacement stock. Kliormg Subdistrict Kebumen Region was resource area of Ongole crossbred cattle (Kebumen) breed.

REFERENCES

CERTIFICATE

This is to certify that

SUMADI

has participated as

POSTER PRESENTER

at the 6th International Seminar on Tropical Animal Production
"Integrated Approach in Developing Sustainable Tropical Animal Production"
Faculty of Animal Science Universitas Gadjah Mada, Yogyakarta-Indonesia
October 20th - 22nd, 2015

Chairman Organizing Committee

Dean Faculty of Animal Science Universitas Gadjah Mada

Prof. Dr. Ali Agus

Prof. I Gede Suparta Budisatria, Ph.D