Sustainable Livestock Production in the Perspective of Food Security, Policy, Genetic Resources, and Climate Change

Proceedings
Full Papers
10-14 November 2014, Yogyakarta, INDONESIA

The 16th AAAP Congress
SUSTAINABLE LIVESTOCK PRODUCTION IN THE
PERSPECTIVE OF FOOD SECURITY, POLICY, GENETIC
RESOURCES, AND CLIMATE CHANGE

PROCEEDINGS
FULL PAPERS

Editors:
Subandriyo
Kusmartono
Krishna Agung Santosa
Edi Kurnianto
Agung Purnomoadi
Akhmad Sodiq
Komang G. Wiryawan
Siti Darodjah
Ismeth Inounu
Darmono
Atien Priyanti
Peter Wynn
Jian Lin Han
Jih Tay-Hsu
Zulkifli Idrus

The 16th AAAP Congress
Cataloguing-in-Publication Data

The 16th Asian-Australasian Associations of Animal Production Societies Proceedings Full Papers
Sustainable Livestock Production in the Perspective of Food Security, Policy, Genetic Resources, and Climate Change
10-14 November 2014, Yogyakarta, Indonesia / editors Subandriyo et al.
2825 p: ill.; 21 x 29,7 cm
Organized by Indonesian Society of Animal Sciences
In Collaboration with Ministry of Agriculture
Faculty of Animal Sciences Universitas Gadjah Mada

4. Genetic Resources 5. Climate Change

I. Title II. Subandriyo
Asian-Australasian Association of Animal Production Societies

Scope of AAAP: AAAP is established to devote for the efficient animal production in the Asian-Australasian region through national, regional, international cooperation and academic conferences.


Organization of AAAP:
- President: Recommended by the national society hosting the next biennial AAAP Animal Science Congress and approved by Council meeting and serve 2 years.
- Two Vice Presidents: One represents the present host society and the other represents next host society of the very next AAAP Animal Science Congress.
- Secretary General: All managerial works for AAAP with 6 years term by approval by the council
- Council Members: AAAP president, vice presidents, secretary general and each presidents or representative of each member society are members of the council. The council decides congress venue and many important agenda of AAAP

Office of AAAP: Decided by the council to have the permanent office of AAAP in Korea. Currently # 909 Korea Sci &Tech Center Seoul 135-703, Korea


Current 19 Member Societies of AAAP:
ASAP(Australia), BAHABangladesh, CAASVM(China), IAAP(India), ISAS(Indonesia), IAAS(Iran), JSAS(Japan), KSAST(Korea), MSAP(Malaysia), MLSBA(Mongolia), NASA(Nepal), NZSAP(New Zealand), PAHA(Pakistan), PNGSA(Papua New Guinea), PSAS(Philippines), SLAAP(Sri Lanka), CSAS(Taiwan), AHAT(Thailand), AHAV(Vietnam).

Previous Venues of AAAP Animal Science Congress and AAAP Presidents

<table>
<thead>
<tr>
<th>I</th>
<th>1980</th>
<th>Malaysia</th>
<th>S. Jalaludin</th>
<th>II</th>
<th>1982</th>
<th>Philippines</th>
<th>V. G. Arganosa</th>
</tr>
</thead>
<tbody>
<tr>
<td>III</td>
<td>1983</td>
<td>Korea</td>
<td>In Kyu Han</td>
<td>IV</td>
<td>1987</td>
<td>New Zealand</td>
<td>A. R. Sykes</td>
</tr>
<tr>
<td>V</td>
<td>1990</td>
<td>Taiwan</td>
<td>T. P. Yeh</td>
<td>VI</td>
<td>1992</td>
<td>Thailand</td>
<td>C. Chantakanha</td>
</tr>
<tr>
<td>VII</td>
<td>1994</td>
<td>Indonesia</td>
<td>E. Soeharto</td>
<td>VIII</td>
<td>1996</td>
<td>Japan</td>
<td>T. Morichi</td>
</tr>
<tr>
<td>IX</td>
<td>2000</td>
<td>Australia</td>
<td>J. Termouth</td>
<td>X</td>
<td>2002</td>
<td>India</td>
<td>P. N. Bhat</td>
</tr>
<tr>
<td>XI</td>
<td>2004</td>
<td>Malaysia</td>
<td>Z. A. Jelan</td>
<td>XII</td>
<td>2006</td>
<td>Korea</td>
<td>L. K. Paik</td>
</tr>
<tr>
<td>XIII</td>
<td>2008</td>
<td>Vietnam</td>
<td>N.V. Thien</td>
<td>XIV</td>
<td>2010</td>
<td>Taiwan</td>
<td>L.C. Hsa</td>
</tr>
<tr>
<td>XV</td>
<td>2012</td>
<td>Thailand</td>
<td>C. Kittayachaweng</td>
<td>XVI</td>
<td>2014</td>
<td>Indonesia</td>
<td>Yudi Guntara Noor</td>
</tr>
</tbody>
</table>

AAAP is the equal opportunity organization

Copyright® : AAAP
# CONTENTS

<table>
<thead>
<tr>
<th>REMARK FROM CHAIRMAN OF 16 AAAP NOC-TEP</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 AAAP PRESIDENTS'S REPORT</td>
<td>ii</td>
</tr>
<tr>
<td>PREFACE</td>
<td>iv</td>
</tr>
</tbody>
</table>

## PLENARY PAPERS

   *Haryono, Bess Tiesnamurti and Anneke Anggraeni*  
   Page 3

2. Manipulating Local Genetic Resources to Maintain Animal Biodiversity–The Practical Point of View  
   *Liang Chou Hsia*  
   Page 17

3. The Development of the Global Livestock Sector and its Impacts on Food Production and Trade  
   *Nicostrato D. Perez and Mark W. Rosegrant*  
   Page 21

4. The Impact of Climate Change on Animal Genetic Resources  
   *David Steane*  
   Page 53

5. The Effects of Human-Ruminant Interactions on Animal Welfare and Productivity in the Tropics  
   *Paul H. Hemsworth and Rebecca E. Doyle*  
   Page 73

6. Human-Animal Interactions and Opportunity to Improve Poultry Welfare and Productivity  
   *Zulkifli Idrus*  
   Page 85

## INVITED PAPERS

   *H. Hirooka and K. Oishi*  
   Page 93

2. Increasing Ruminant Production Efficiency and Reducing Methane Production  
   *M. Wanapat, S. Kang and K. Phesatcha*  
   Page 107

3. Conserving Endangered Breed: Case Study of Gembrong Goats  
   *I Gede Suparta Budisatria, Jafendi Purba Hasoloan Sidadolog, Dyah Maharani and Sumadi*  
   Page 135

4. Improvement of Forages Quality by Molecular Breeding in Tropical Grasses: the Case of *Brachiaria ruziziensis*  
   *Genki Ishigaki and Ryo Akashi*  
   Page 141

5. Linking Gene Expression Patterns with the Productivity of Sheep  
   *Peter Wynn, David McGill and Sue Hatcher*  
   Page 145
<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>E 1136 MM</td>
<td>Assessment of Feed Availability for Cattle, Sheep and Goats in Two Villages in the Central Dry Zone of Myanmar</td>
<td>Soe Min Thein, Aung Aung, Kyaw Naing Oo, Nan Kham Hlalin, Win Myint Thein, Lwin Naing Oo, Zin Min Lati, Tu Tu Zaw Win, Jenny Hanks and Werner Stur</td>
</tr>
<tr>
<td>E 82 ID</td>
<td>Identification of Body Measurement of Marica Goat as Local and Native Goat of South Sulawesi Indonesia</td>
<td>Sri Rachma A.B., Muh. Ihsan A. Dogong, Lellah Rahim, Kusumandari Indah Prahesti, Hiroshi Harada and Takefumi Ishida</td>
</tr>
<tr>
<td>E 386 ID</td>
<td>Behavior Study of Male Bligon Goats Kept on Individual and Colony Housing</td>
<td>I Gede Suparta Budisatria, Panjono and Ali Agus</td>
</tr>
<tr>
<td>E 423 IR</td>
<td>Milk Yield and Compositions of Iranian Sannen Dairy Goats Fed Diets Containing Pistachio Hull Tamin and Polyethylene Glycol</td>
<td>A. A. Naserian, A. Rahimi, R. Valizadeh and A. Tahmasbi</td>
</tr>
<tr>
<td>E 424 IR</td>
<td>Different Levels of Protein by Dietary Addition of Cottonseed Meal on the Performance of Iranian Sannen Kids</td>
<td>M. Sharifi, A. A. Naserian and A. Rahimi</td>
</tr>
<tr>
<td>E 517 TH</td>
<td>The Carcass and Meat Quality of Anglo Nubian X Thai Native Crossbreds, and Thai Native Goats</td>
<td>Sivapirunthep, P. and K. Tuntivisoottikul</td>
</tr>
<tr>
<td>E 559 BD</td>
<td>Germination Test of Wheat for Pregnancy Diagnosis of Goats and Sheep</td>
<td>M. M. Islam, M. B. Sarker, M. H. Alam, R. I. Khan and M. Moniruzzaman</td>
</tr>
<tr>
<td>E 689 TH</td>
<td>Effect of Breed Sex and Age on Carcass Characteristic and Composition of Goat Meat</td>
<td>S. Anothaisinthawee, P. Sirisom and W. Awirutthapanich</td>
</tr>
<tr>
<td>E 692 ID</td>
<td>Potency of Batur and Garut Sheep Wool in Carpet Industry</td>
<td>A. Huda ya, M. Yamin and Totong</td>
</tr>
</tbody>
</table>

(22)
Production Performance and Carcass Traits of Thai Native x Santa Ines Sheep
P. Jangwanitlert, K. Tuntrisootikul and L. Piasai

Growth Performance and Carcass Characteristics of Marica Goat Fed by Complete Feed with Different Level of Crude Protein
Muhammad Ihsan Andi Dagong and Asmuddin Nusir-Syahdar Baba

Evaluate the Biological Safety of Xylose Hydrolyzate and the Effect of the Growth and Blood Traits of Goat with Xylose Hydrolyzate

Pre-Weaning Performance of Savanna Brown Goats as Influenced by Age at Castration, Sex and Type of Birth on Body Correlation Relationship
D. N. Tsado, T. Z. Adama, B. A. Ayanwale and E. L. Shitawoya

Carcass Characteristics of Bignon and Kejobong Goats
Panjono, Rusman and I Gede Suparta Budisatria

Study on the Changes of Enzyme and IGF -1 Hormone in Blood Serum during the Antler Growth Period in Spotted Deer (Cervus nippon)
B.T. Jeon, S.K. Kang, S.W. Kim, S.H. Sung and J.H. Moon

The Relationship of Vaginal Cytology Analysis with Estrous Signs to the Success of Artificial Insemination in Dogs
Taty L. Yusuf

Use of GPS and GIS for Estimating Grazing Pattern of Yak in Western Nepal, Himalaya

Globalization of Dairy Markets in South-Eastern Asia
Hennig Otte Hansen

Investment Risk Assessment of Two Types Beef Cattle Enterprise in Banjarnegara District, Central Java Province, Indonesia
Mochamad Sugiarto, Oentoeng E. Djamiko, and Sri Mastuti

Value Chain of Milk Cluster Industry in the Special Region of Yogyakarta, Indonesia
N. L. Ma'rufah and T. W. Murti
<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>E 1136 MM</td>
<td>Assessment of Feed Availability for Cattle, Sheep and Goats in Two Villages in the Central Dry Zone of Myanmar</td>
<td>915</td>
</tr>
<tr>
<td></td>
<td><em>Soe Min Thein, Aung Aung, Kyaw Naing Oo, Nan Kham Hlain, Win Myint Thein, Lwin Naing Oo, Zin Min Latt, Tu Tu Zaw Win, Jenny Hanks and Werner Stur</em></td>
<td></td>
</tr>
<tr>
<td>E 82 ID</td>
<td>Identification of Body Measurement of Marica Goat as Local and Native Goat of South Sulawesi Indonesia</td>
<td>919</td>
</tr>
<tr>
<td></td>
<td><em>Sri Rachma A.B., Muh. Ihsan A.Dagong, Lellah Rahim, Kusumandari Indah Prahesti, Hiroshi Harada and Takafumi Ishida</em></td>
<td></td>
</tr>
<tr>
<td>E 120 MX</td>
<td>Variability in Production Traits in Mexican Dairy Goat Herds</td>
<td>923</td>
</tr>
<tr>
<td>E 296 ID</td>
<td>Effect of Addition Concentrate on Boerawa Goat Against Performance Production Keep by farmer in Intensive</td>
<td>927</td>
</tr>
<tr>
<td></td>
<td><em>K. Adhianto, N. Ngadyono, I.G.S. Budisatria and Kustantinah</em></td>
<td></td>
</tr>
<tr>
<td>E 386 ID</td>
<td>Behavior Study of Male Bligon Goats Kept on Individual and Colony Housing</td>
<td>931</td>
</tr>
<tr>
<td></td>
<td><em>I Gede Suparta Budisatria, Panjono and Ali Agus</em></td>
<td></td>
</tr>
<tr>
<td>E 423 IR</td>
<td>Milk Yield and Compositions of Iranian Sannen Dairy Goats Fed Diets Containing Pistachio Hull Tannin and Polyethylene Glycol</td>
<td>935</td>
</tr>
<tr>
<td></td>
<td><em>A. A. Naserian, A. Rahimi, R. Valizadeh and A. Tahmasbi</em></td>
<td></td>
</tr>
<tr>
<td>E 424 IR</td>
<td>Different Levels of Protein by Dietary Addition of Cottonseed Meal on the Performance of Iranian Sannen Kids</td>
<td>939</td>
</tr>
<tr>
<td></td>
<td><em>M. Sharifi, A. A. Naserian and A. Rahimi</em></td>
<td></td>
</tr>
<tr>
<td>E 517 TH</td>
<td>The Carcass and Meat Quality of Anglo Nubian X Thai Native Crossbreeds, and Thai Native Goats</td>
<td>943</td>
</tr>
<tr>
<td></td>
<td><em>Sivapirunthep, P. and K. Tuntivisootitikul</em></td>
<td></td>
</tr>
<tr>
<td>E 559 BD</td>
<td>Germination Test of Wheat for Pregnancy Diagnosis of Goats and Sheep</td>
<td>947</td>
</tr>
<tr>
<td></td>
<td><em>M. M. Islam, M. B. Sarker, M. H. Alam, R. I. Khan and M. Moniruzzaman</em></td>
<td></td>
</tr>
<tr>
<td>E 689 TH</td>
<td>Effect of Breed Sex and Age on Carcass Characteristic and Composition of Goat Meat</td>
<td>951</td>
</tr>
<tr>
<td></td>
<td><em>S. Anothaisinthawee, P. Sirsom and W. Awiruthapanch</em></td>
<td></td>
</tr>
<tr>
<td>E 692 ID</td>
<td>Potency of Batur and Garut Sheep Wool in Carpet Industry</td>
<td>955</td>
</tr>
<tr>
<td></td>
<td><em>A. Hudaya, M. Yamin and Totong</em></td>
<td></td>
</tr>
</tbody>
</table>
Effect of Addition Concentrate on Boerawa Goat against Performance Production Keep by farmer in Intensive System

K. Adhianto1, N. Ngadiyono2, I.G.S. Budisatria2 and Kustantinah2
1Department of Animal Science, Faculty of Agriculture, Lampung University, Bandarlampung; 2Faculty of Animal Science, Gadjah Mada University, Yogyakarta, Indonesia
Corresponding email: k_adhianto@unila.ac.id

ABSTRACT

The goal of this study to determine the effect of addition concentrate on boerawa goat against performance production keep by farmer in intensive about 8 months old with an average initial weight of 21 kg. The research is divided into 4 treatment groups with 1 control. Addition of concentrate given since the beginning of the study, for preliminery and treatment it’s about 5 months. The results showed that the addition of different concentrate level are not significantly affected performance production, such as ADG (R0; 0,13±0,01, R1; 0,16±0,02, R2; 0,16±0,03, and R3; 0,15±0,03) and feed conversion (R0; 7,19±1,47, R1; 6,237±1,21, R2; 6,29±1,12, and R3; 6,34±1,27). IOFC showed that addition concentrate is more efficient than control (R0; 349.106±70.372, R1; 440.957±75.178, R2; 441.204±10.3734, and R3; 430.801±80.455)

Key Words: Boerawa goat, Performance production

INTRODUCTION

The majority of goat types in Indonesia are Kacang goat (capra aegagrus hircus) and Etawa breed (Edey, 1983). Goat in Indonesia are mainly raised for meat production, so that the production characteristics to concern are amount of annual produced offspring from a maternal parent and weight gain (Bradford, 1993). Boer goat has characteristics to produce meat compared with other types of goats. These characteristics help Boer goat to successfully improve performance of goat production amongst local goats through cross breeding. Some important results deserve to note include improvement of birth weight, average daily gain, weaning weight, yearling weight, calving interval, and carcass quality (Waldron et al., 1997; Cameron et al., 2001). These are main characteristics influencing meat goat production. Hadi (2006) reported that the average of Boerawa goat birth weight was 3.39 kg and 24.80 kg at weaning age. Adhianto and Sulastri (2007) suggested that Boerawa goat had 2.9 kg birth weight, 19.8 kg weight at weaning, and 40.9 kg at 1 year. There had been not much efforts conducted to find out Boerawa goat performance raised intensively, therefore this research was to be conducted to find out potentials of Boerawa goat which was raised intensively with concentrate addition to its feed.

MATERIALS AND METHODS

This research used 20 male Boer goats of 4-5 months with average initial weight of 21 kg. Instruments in this research were individual cages of 150 cm x 100 cm used to raise Boer goat during the research. Cages were equipped with vegetation feed container, plastic bucket used for concentrate feed container, and plastic bucket for drinking. Sickle and cleaver were used to chop and cut vegetation feed. Digital scale with 50 kg capacity and 10 g accuracy was used to scale feed and goat. Daily diary was used to record all activities during research. Coconut stick broom and regular broom were used to clean animal feces the cage. Some laboratory instruments were used to analyze feed proximate.

The goats were randomly located in the individual cages. Goat raising time was 5 months. Two initial months were used for adaptation and 3 other months were for treatments. Raising and feeding of experiment goats were conducted in the chin cages which was divided into
individual cage partitions of 150 cm x 100 cm. This experiment used basal feed in form of king grass (*Pennisetum purpureum*) and protein concentrate coming from fish powder, coconut oilcake, coffee skin, paddy bran, tapioca waste (*onggok*), molasses, and premix, which were formulated with 13%, 16%, and 19% protein content. Feeding was based on estimation of 3.5% body weight in forms of 60% dry material of basal feed and 40% protein concentrate. The feed composition was presented in Table 1.

**Table 1. Composition of feed**

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Dry matter</th>
<th>Ash</th>
<th>Crude Protein</th>
<th>Extract Ether</th>
<th>Crude Fiber</th>
<th>BETN</th>
<th>TDN*</th>
</tr>
</thead>
<tbody>
<tr>
<td>R0</td>
<td>28,78</td>
<td>8,62</td>
<td>14,89</td>
<td>12,91</td>
<td>28,50</td>
<td>35,08</td>
<td>60,55</td>
</tr>
<tr>
<td>R1</td>
<td>51,38</td>
<td>13,03</td>
<td>15,14</td>
<td>10,35</td>
<td>27,14</td>
<td>29,50</td>
<td>66,52</td>
</tr>
<tr>
<td>R2</td>
<td>52,26</td>
<td>10,90</td>
<td>15,29</td>
<td>11,00</td>
<td>26,80</td>
<td>31,00</td>
<td>71,40</td>
</tr>
<tr>
<td>R3</td>
<td>51,78</td>
<td>10,49</td>
<td>16,58</td>
<td>9,12</td>
<td>25,75</td>
<td>32,58</td>
<td>73,48</td>
</tr>
</tbody>
</table>

*TDN (total digestible nutrient) was estimated by using equation of Hartadi et al. (1997)

During raising period, feed sampling and recording body weight were conducted. Variables to observe in this experiments were:

- Dry matter intake (DMI)
- Crude protein intake (CPI)
- Total digestible nutrient (TDN)

To find out the content of DM, CP, and TDN proximate analysis was conducted on the feed sample. After content of DM, CP, and TDN were found out, DMI, CPI, and TDN intake could be estimated.

Average daily gain (ADG) body weight was measured once in every 2 weeks in the morning before the goat fed and drink was given. The ADG could be found by dividing the difference of weight with weighing time period.

The feed conversion was estimated based on the comparison of sum of DMI and ADG.

**Feed cost per gain** (Setyono, 2006):

\[
\text{Feed cost per gain} = \frac{\text{intake (kg day)} \times \text{feed cost per kilogram}}{\text{ADG}}
\]

**Income over feed cost (IOFC)** (Setyono, 2006):

\[
\text{IOFC} = \left( \text{ADG (kg)} \times \text{price per kg body weight (kg)} \right) - \left( \text{feed intake (kg)} \times \text{feed cost (Rp)} \right)
\]

Collected information during experiment was used to find out and test production parameter of Boerawa goat. Analysis of variance was conducted according to one way of anova, and treatment difference average was tested by using *Duncan’s New multiple Range Test* (DMRT) (Steel and Torrie, 1991).

**RESULT AND DISCUSSION**

In the efforts of improving Boer goat growth, the average DMI in the treatment groups was no significantly difference. The concentrate addition in the treatment R1, R2, and R3 in fact did not immediately improve DMI. The average CPI in treatment groups R1, R2, and R3 receiving concentrate addition was significant difference (P< 0.01) compared with R0, while the average CPI between group treatment that received concentrate addition was no significant difference. However, along increasing CP content in feed R1, R2, and R3, the CPI pattern trends were also more increasing in R1, R2, and R3. Generally, the concentrate
addition to treatment groups seemed to be able to improve CPI, even though not influential to DMI.

Table 2. DMI, CPI, CFI and TDN

<table>
<thead>
<tr>
<th>Variable</th>
<th>Observation</th>
<th>Feed treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R0</td>
<td>R1</td>
</tr>
<tr>
<td>Intake (g/kg BB$^{0.75}$)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DM ns</td>
<td>91.37±0.14</td>
<td>90.93±0.18</td>
</tr>
<tr>
<td>CP</td>
<td>9.21±0.014a</td>
<td>21.94±0.06b</td>
</tr>
<tr>
<td>CF ns</td>
<td>16.39±0.03</td>
<td>16.98±0.03</td>
</tr>
<tr>
<td>TDN ns</td>
<td>51.79±0.08</td>
<td>48.95±0.10</td>
</tr>
</tbody>
</table>

Annotation: different letter in the same row indicates significant difference (P<0.01)
ns non-significant, DM: Dry Matter, CP: Crude Protein, CF: Crude Fiber, TDN: Total Digestible Nutrient

The Crude Fiber and TDN intake in this experiment was no significant difference between treatments R0, R1, R2, and R3. Soto-Novarro et al. (2004) also reported that NDF intake and TDN was no significant difference between feed treatment and concentrate levels of 13% and 19% consumed by Boer and Spanish cross breed goats.

The analysis of variance was to find out the influence of main factor of feed treatment to Boerawa goat ADG and it indicated that the average of ADG between treatment groups was no significant difference between R0, R1, R2, and R3. The ADG value in treatment groups R1, R2, and R3 had higher tendencies compared with R0. This was caused by higher protein feed consumption than R0.

The average of ADG of Boer goat based on feed treatment groups is presented in Table 3.

Table 3. ADG, feed conversion, and feed cost per gain of Boerawa goat

<table>
<thead>
<tr>
<th>Variable</th>
<th>Observation</th>
<th>Feed Treatments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>R0</td>
</tr>
<tr>
<td>ADG (kg/day) ns</td>
<td>0.13±0.01</td>
<td>0.16±0.02</td>
</tr>
<tr>
<td>Feed Conversion ns</td>
<td>7.19±1.47</td>
<td>6.237±1.21</td>
</tr>
<tr>
<td>Feed cost per Gain (Rp/kg)</td>
<td>11.299±2.803</td>
<td>9.843±1.904</td>
</tr>
<tr>
<td>IOFC (Rp)</td>
<td>349.106±70.372</td>
<td>440.957±75.178</td>
</tr>
</tbody>
</table>

Annotation: ns: nosignificant

The statistical analysis result of feed conversion average in treatment groups was no significant difference but the feed conversion average value in R0 was likely higher than R1, R2, and R3. The feed conversion is an indicator to determine feed use efficiency, which is influenced by feed quality, body weight increase value, and digestibility value (Anggorodi, 1980).

The goat farming productivity improvement will be better to be followed with farmer’s income improvement. In the intensive Boerawa goat raising with concentrate addition based on agro-industrial waste is in fact able to improve farmer’s income. This research found estimation of feed cost per gain and income over feed cost which is presented in Table 3.

The statistical analysis result showed that the average feed cost per gain values between treatment groups were no significant different. The feed cost per gain value of R0 was likely higher than R1, R2, and R3. R0 was the control treatment group which was feed with forage. Giving forage feed was in fact not more economical than addition with protein concentrate. The concentrate addition improve feed cost efficiency, and

The research result showed that IOFC of R0 was lesser than R1, R2, and R3. It suggested that additional concentrate treatment could improve farmer’s income than conventional feed. In
common, all research results illustrate that the Boerawa goat raising intensively by adding protein concentrate is able to provide opportunity to improve goat productivity and financial benefit for farmers. In the future, the introduction of additional protein concentrate to the feed needs to be done and socialized to Boerawa goat farmers, so that they can enjoy their cattle raising business optimally.

REFERENCES


CERTIFICATE

This is to certify that

KUSUMA ADHIANTO

has participated as a

ORAL PRESENTER

at the 16th Asian-Australasian Association of Animal Production Societies Congress
“Sustainable Livestock Production in the Perspective of Food Security, Policy, Genetic Resources and Climate Change”
Universitas Gadjah Mada, Yogyakarta – Indonesia
10th - 14th November 2014

President
Asian-Australasian Association of Animal Production Societies

Mr. Xudi Guntara Noor

Chairman
Organizing Committee

Budi Gunarto, Ph.D.