The 6th ISTAP
International Seminar
on Tropical Animal Production

Integrated Approach in Developing Sustainable Tropical Animal Production

PROCEEDINGS

PART I

October 20-22, 2015
Yogyakarta Indonesia

ISBN: 978-979-1215-26-8

Published by:
Faculty of Animal Science, Universitas Gadjah Mada Yogyakarta, Indonesia, 2015
PROCEEDINGS

The 6th ISTAP
International Seminar
on Tropical Animal Production

October 20-22, 2015, Yogyakarta, Indonesia

“Integrated Approach in Developing Sustainable Tropical Animal Production”

Published by:
Faculty of Animal Science
Universitas Gadjah Mada

ISBN: 978-979-1215-26-8

©2015, Faculty of Animal Science Universitas Gadjah Mada

No part of this publication may be reproduced or transmitted in any forms or by any means, electronic or mechanical, now known or heretofore invented, without written permission from the publisher.

Address: Faculty of Animal Science, Universitas Gadjah Mada
 Jl. Fauna 3, Kampus UGM, Bulaksumur, Yogyakarta 55281, Indonesia
Phone: +62-274-513363/+62-274-560868
Fax: +62-274-521578
Email: istap@ugm.ac.id
Website: www.istap.ugm.ac.id
Editor-in-Chief

Cuk Tri Noviandi
(Universitas Gadjah Mada, Indonesia)

Editorial Board

Subur Priyono Sasmito Budhi
(Zaenal Bachruddin
(Ristianto Utomo
(Widodo
(Soeparno
(Yuny Erwanto
(Adiarto
(Ismaya
(Tety Hartatik
(Wihandoyo
(Endang Baliarti
(Krishna Agung Santosa
(Sudi Nurtini
(Budi Guntoro
(Nanung Danar Dono
(Zuprizal
(Keshav L. Maharjan
(Henning Otte Hansen
(Yukinori Yoshimura
(Allen Young
(Yanin Opatpatanakit
(Universitas Gadjah Mada, Indonesia)
(Hiroshima University, Japan)
(University of Copenhagen, Denmark)
(Hiroshima University, Japan)
(Utah State University, USA)
(Maejo University, Thailand)

Editorial Staff

Rima Amalia EW, Prisilia Putri S, Miftahush S Haq, Septi Mulatmi,
Aditya Alqamal, Rian Nugroho A, Pradiptya AH, Satyaguna R,
Zefanya AG, Bagas Pamungkas
PREFACE

On behalf of Faculty of Animal Science, Universitas Gadjah Mada, I am pleased to present you the 6th International Seminar on Tropical Animal Production (ISTAP) which is held on October 20–22, 2015 at Auditorium drh. Soepardjo, Faculty of Animal Science UGM, Yogyakarta. Under the main theme “Integrated Approach in Developing Sustainable Tropical Animal Production”, we expect that information and ideas on animal production systems in the tropics and its related problems will be shared among participants, thus we can elaborate an integrated approach in developing sustainable tropical animal production. I believe, this can be achieved since more than 250 animal scientists, researchers, students, and producers from more than 15 countries join this seminar.

In this moment, I have to address my great thanks to all people who have contributed for the success of this seminar. First, to all participants, thank you for your contributions, time, and efforts in participating in all sessions in this seminar. We also would like to extend our gratitude to the reviewers and editors for dedicate their expertise and precious time in reviewing and editing the papers. I deeply appreciate the hard work of all members of the Steering Committee, Organizing Committee, and students of Faculty of Animal Science UGM for making this seminar achieved a great success!

I hope all of you enjoy the seminar and Jogja as well!

Dr. Cuk Tri Noviandi

Editor in Chief
REPORT FROM ORGANIZING COMMITTEE

Dear all of the scientists, delegates, participants, ladies and gentlemen,

Praise be to The Almighty for His Merciful and Beneficent to raise up this memorable moment for all of the scientists and delegates from all over the world who were interested in Animal Science field to meet up together.

On behalf of all the members of Board Committee, it is my great pleasure and honor to welcome all of you and impress thankful, and present a high appreciation for your participation in joining the 6th ISTAP in Yogyakarta, one of the Special Region in Indonesia where culture and tradition live in harmony with the modern nuance and educational spirit makes it a beautiful venue of this seminar.

During this event, we have distinguished scientists from all over the world to present plenary papers Livestock Management, Production, and Environment; Feed, Land, and Landscape for Sustainable Animal Production; Livestock Industry and Technology; Economics, Social, and Culture in Livestock Development; and Special issue on Halal Food, Safety and Regulation. It is noted that around 200 scientists as well as livestock producers, companies, graduate and postgraduate students from 15 countries attend the seminar; and more than 160 research papers will be presented. We can see great enthusiasm of all the scientists to solve livestock problems as well as to share valuable information and knowledge for human prosperity all over the world.

The 6th ISTAP Program consists of scientific and technical programs as well as social and cultural activities. The scientific and technical programs offer 4 plenary sessions, field trip, and many scientific sessions (both oral and poster presentation). The social and cultural programs of the 6th ISTAP are very important as the scientific and technical programs since the promotion of friendship and future scientific cooperation are also central to this seminar. Opening Ceremony offers you the Seminar Program a glance. Participants will attend a warm invitation from Dean Faculty of Animal Science UGM in a Welcome Dinner that will give you the most memorable moment to attend. Field trip activity offers a wonderful sightseeing to the most spectacular natural landmark in Yogyakarta, Merapi Lava Tour and Ulen Sentalu Museum. We do hope that you will not miss any of these wonderful opportunities.

Closing Ceremony will be held on October 22nd, 2015, immediately after the last session of presentation. The 6th ISTAP award will be announced for some participant as an appreciation for their valuable research.

Finally, on behalf of 6th ISTAP Committee, I wish all of the participants having a great achievement of success and fulfill the expectation as well as enjoying the interaction with all scientists participating in the seminar.

High appreciation I may acknowledge to the Rector of Universitas Gadjah Mada and Dean Faculty of Animal Science UGM, who have concerned to facilitate the seminar site host.

Special thank to the Steering Committee, Scientific Committee, Reviewers and Editorial Boards for their great contribution to make the seminar successfully organized.

Terima kasih (Thank you).
Sincerely Yours,

Prof. I Gede Suparta Budisatria, Ph.D
Chairman
The Organizing Committee of the 6th ISTAP
WELCOME ADDRESS

Selamat pagi (Good morning)

Dear Rector of Universitas Gadjah Mada, all of Invited Speakers, honorable guests, all of delegates, participants, distinguished guests, Ladies and Gentlemen

Attendants of The 6th ISTAP,

It is my great pleasure and honor to extend a warm welcome to all of you at The 6th International Seminar on Tropical Animal Production, which be held on October 20 – 22, 2015 at Auditorium drh. Soepardjo, Universitas Gadjah Mada, Yogyakarta Indonesia. This seminar is proudly organized by Faculty of Animal Science Universitas Gadjah Mada.

The contribution of this seminar to the development of national food security is truly significant for introducing of new scientific knowledge and equipments that is much needed in Indonesia to maintain a safe and secure environment and to look at more effective ways to meet future challenges. We can see great enthusiasm of the entire participant to present their latest research as well as to share valuable information and knowledge for human prosperity all over the world.

In these 3 days of seminar, we have invited some Plenary Speakers and Invited Papers who are qualified as scientists and bureaucrats in animal science field to share their valuable information and knowledge. Other participants can deliver their precious research through oral and poster presentations.

Finally, on behalf of Faculty of Animal Science, we would like to extend our sincere gratitude to the Minister of Rural, Rural Development, and Transmigration, Republic of Indonesia, Mr. Marwan Jafar, for his generosity to be with us here to give Keynote Speech. Then, it is our great honor and pleasure to have qualified scientists and bureaucrats as Plenary Speakers and Invited Papers to share their valuable knowledge during the plenary and concurrent sessions. Moreover, special thank you is for the Steering Committee, Scientific Committee, Reviewers and Editorial Boards for their great contribution to make the seminar a great success. Also, we would like to congratulate and deliver high appreciation to the Organizing Committee as the organizer for their great contribution and generous efforts to make the seminar successfully organized.

And to all of the participants, I hope that this seminar will always success and bring some acknowledgement for all of us. Also, I wish all of the participants having a great achievement of success and fulfill the expectation as well as enjoying the interaction with all participants.

With all of our hospitality, we will try our best to make your brief visit to our country become a wonderful and memorable moments. We are looking forward to meeting you all in the future event.

Wish you all a very pleasant and most enjoyable stay in Yogyakarta, Indonesia, beside you scientific journeys.

Terima kasih (Thank you).

Sincerely Yours,
Prof. Dr. Ali Agus
Dean Faculty of Animal Science UGM
OPENING REMARKS

Dear all of Scientists, distinguished guests, delegates, participants, Ladies and Gentlemen,

On behalf of Universitas Gadjah Mada, I am happy to welcome you and present a high appreciation for your participation in joining the 6th International Seminar on Tropical Animal Production hosted by the Faculty of Animal Science UGM in Yogyakarta from 20 – 22 October 2015.

Under the theme of “Integrated Approaches in Developing Sustainable Tropical Animal Production”, we do hope that this seminar concludes with shared ideas and best practices, technology, and global networks that are required to increase animal production. The increase of animal production as one source of food is crucial to feed the world given that the population is expected to increase from 6 billion to about 8.3 billion in 2030. According to FAO (2008, 2009), the consumption of animal food increased from 10 kg/per annum in 1960, 26 kg/per annum in 2000, and it is expected to be 37 kg/per annum. Animal production is an integral part of food production and contributing for the quality of human food supply. Animal and agricultural production is an important component in the integrated farming systems in developing countries as this produces high quality foods, provides job opportunities in rural areas, as well as enriching livelihood.

As a tropical country with high animal biodiversity, Indonesia and other tropical countries, have a variety number of indigenous and local animal genetic resources and germ plasm. This variety of animal germ plasm could be explored and developed not only for animal and food production but also for animal conservation. Apart from being exploited as food resources, it is therefore important to consider animal conservation. Conservation will protect the genetic potency of local bred and their family, and the domesticated animal bred, and this would secure our future food resources.

In these 3 days of seminar, we believe those aforementioned issues will be discussed, and technical solution as well as recommendation will be provided to solve the existing problems in tropical animal production.

Finally, on behalf of Universitas Gadjah Mada, we would like to congratulate and thanks to the Faculty of Animal Science UGM as the organizer for their great efforts to make the seminar successfully organized. To all of participants, I wish all of you have a great discussion and interaction with other scientists participating in the seminar as well as enjoying your time in Yogyakarta.

Thank you

Prof. Ir. Dwikorita Karnawati, M.Sc., Ph.D.
Rector of Universitas Gadjah Mada
LIST OF CONTENTS

PREFACE ... iii
REPORT FROM ORGANIZING COMMITTEE .. iv
WELCOME ADDRESS .. v
OPENING REMARKS ... vi
LIST OF CONTENTS ... vii

PLENARY SESSION

1. Strategies to Increase the Domestic Production of Raw Milk in Indonesia and Other South East Asian Countries
 John Moran and Phillip Morey ... 1-11

2. Nutritional Challenges of Lactating Dairy Cattle in a Tropical Climate
 J. K. Bernard ... 12-17

3. Feed, Land, and Landscape for Sustainable Animal Production
 Shaukat A. Abdulrazak and Isaac M. Osugab .. 18-18

4. Food Safety Regulation and Halal Food Issues in Indonesia
 Roy Sparringa .. 19-19

5. Extension System for Livestock Development in Developing Countries: Knowledge Management Application
 Budi Guntoro .. 20-27

6. Structural Development of Livestock Farms in a Global Perspective
 Henning Otte Hansen .. 28-50

7. Whole Farm Problems with Heat Stress – It’s Not Just for Lactating Dairy Cows
 Allen Young ... 51-57

LEAD PAPER

1. Antimicrobial Peptides Expression for Defense System in Chicken Gastrointestinal and Reproductive Organs
 Yukinori Yoshimura, Bambang Ariyadi, and Naoki Isobe .. 58-60

2. Improving Technology Adoption and Sustainability of Programs to Increase Bali Cattle Productivity in West Nusa Tenggara Province, Indonesia
 Yusuf A. Sutaryono, T. Panjaitan, and Dahlanuddin .. 61-66

3. The Role of Family Poultry Systems in Tropical Countries
 Yusuf L. Henuk, Monchai Duangjiinda, and Chris A. Bailey ... 67-71
SUPPORTING PAPERS

Part I

Animal Feed and Nutrition

1. NM-03-P The Marl and Kaolin in Broiler Diet: Effects on the Bone Weight and the Cutting Yield
 D. Ouachem, A. Meredef, and N. Kaboul..72-75

2. NM-04-P The Effect of Liquid Nanocapsule Level on Broiler Fat Quality
 Andri Kusmayadi, Zu prizal, Supadmo, Nannung Danar Dono, Tri Yuwanta, Ari Kusuma Wati, Ronny Martien, Sundari.................76-79

3. NM-05-O Production and Egg Quality of Quail Layer Given Diets Containing Different Levels of Crab (Portunus pelagicus) by-Product Meal
 K.G. Wiryawan, Syamsuhaidi, D.K. Purnamasari, and T.S. Binetra...80-84

4. NM-08-P A Preliminary Study on the Use of Enzyme and Organic Acids in Rice Bran-containing Diet at Two Levels of Dietary Protein for Rabbit
 Tuti Haryati and Yono C. Raharjo..85-89

5. NM-09-O Efficacy of Toxin Binder in Reducing Induced Aflatoxin B and Ochratoxin A in Broiler Feed
 Anjum Khalique, Muhammad Umer Zahid, Jibran Hussain, Zahid Rasool...90-93

6. NM-10-O Evaluation of Local Feed in Broiler Diets in Small Scale Farm in Palu Central Sulawesi

7. NM-11-O Digestibility and Nutritional Value of Gedi (Abelmoschus manihot (L.) Medik) Leaves Meal in the Diet of Broilers
 Jet Saartje Mandey, Hendrawan Soetanto, Osfar Sjofjan, Bernat Tulung..100-104

8. NM-12-O Utilization of Skipjack Tuna (Katsuwonus pelamis L.) Gill in Diet as a Source of Protein on Carcass Quality of Broiler Chickens
 Jein Rinny Leke, Jet S. Mandey, Meity Sompie, Fenny R. Wolayan...105-109

9. NM-13-O The Dynamics of Indigenous Probiotics Lactic Acid Bacteria on Growth Performance, Total Adherence Bacteria, and Short-Chain Fatty Acids Production in the Ileum of Male Quail
 Sri Harimurti, Sri Sudaryati and Bambang Ariyadi..110-110
10. NM-14-O Selection of Human-origin Lactobacillus Strains as Probiotics with Capability in Synthesizing Conjugated Linoleic Acid and Alleviating Hyperglycemia in Rats (Rattus norvegicus) in Vivo Widodo, Pradipta Ayu Harsita, Samuel Aditya, Nosa Septiana Anindita, Tutik Dwi Wahyuningsih and Arief Nurrochmad...111-116

12. NM-16-O Performance of Japanese Quails Fed Different Protein Levels and Supplemented with Betaine Adi Ratryianto, Rysca Indreswari, Adi Magna Patriadi Nuhriawangsa, Apriliana Endah Haryanti...118-122

13. NM-17-O The Influence of Vitamin D3 Levels on Diets with Phytase on Production Performance of Layer Quail (Coturnix coturnix japonica) Adi Magna Patriadi Nuhriawangsa, Adi Ratryianto, Winny Swastike, Rysca Indreswari, Ahmad Pramono and Try Haryanto...123-126

14. NM-20-O Phytobiotics Habbatus Sauda and Garlic Meal: Are Still Efficacious During the Spread of Marek’s Disease Outbreak? N.D. Dono, E. Indarto, Kustantinah, Zuprizal...127-131

15. NM-22-O The Effect of Dietary Calcium and Phosphorous Level on Serum Mineral Contents of the Bantul Local Duck within a Day H. Sasonoko, T. Yuwanta, Zuprizal, Supadmo, and I. Widiyono...132-132

16. NR-01-P Supplementation Local Feed Urea Gula Air Multinutrient Block and Different Levels of Sulphur for Increase Lactation Productivity Doe Also Decrease Kid Mortality Bligon Goat Grazed at Timor Savannah Arnold E. Manu, Yusuf L. Henuk, H.L.L. Belli, M.M. Kleden...133-137

17. NR-02-P Methane Production and Rumen Fermentation Characteristics of Buffalo Ration Containing Sorghum Silage with Rumen Simulation Technique (RUSITEC) Methods Teguh Wahyono, Dewi Apri Astuti, Komang G. Wiryawan, Irawan Sugoro, Suharyono...138-142

18. NR-04-O Body Weight Gain Response of Sumba Ongole Cattle to the Improvement of Feed Quality in East Sumba District, East Nusa Tenggara, Indonesia Debora Kana Hau and Jacob Nulik...143-146
19. NR-05-O Daily Body Weight Gain of Bali Cattle Fed with Leucaena Leucocephala as the Main Ration in West Timor, East Nusa Tenggara, Indonesia
 Jacob Nulik and Debora Kana Hau...147-150

20. NR-06-O Tannin Anthelmintic Doses, Metabolizable Energy and Undegraded Protein Contents of Rubber Leaves (Hevea brasiliensis) as Herbal Nutrition for Goats
 Sri Wigati, Maksudi Maksudi, Abdul Latief and Eko Wiyanto151-155

21. NR-07-P Consumption and Digestibility of Nutrients in Bali Cattle at the Last Period of Pregnancy Kept under Semi Intensive System Supplemented with Nutritive Rich Feed Contained Lemuru Oil and Zinc
 Erna Hartati, E.D. Sulistijo, A. Saleh...156-160

22. NR-08-P Preliminary Screening for Anthelmintic Potential of Sesbania grandiflora Leaves for Parasitic Infected Goats in Short-Term Trial
 Mohd Azrul Lokman, Kanokporn Phetdee, Sathaporn Jittapalapong and Somkiert Prasanthi...161-165

23. NR-09-O The Effect of Urea Treated Straws and Urea-Molasses Feed Blocks (UMB) on Reproductive Performance of Libyan Barbary Sheep
 Mabruk, H.S., H. A. Salim, A. E. Benshaban, A.E. Ahtash, H.E. Daeky and Z.N. Elmeshabie...166-172

25. NR-11-O Chemical Composition, Antioxidant Compounds and Antioxidant Capacity of Ensiled Coffee Pulp

26. NR-12-O Influence of Starch Type as Substrate Material in Dry Lactic Acid Bacteria Inoculant Preparation on Fermentation Quality and Nutrient Digestibility of King Grass Silage
 B. Santoso, B. Tj. Hariadi and Jeni...182-186

27. NR-13-O Responses of Growing-Female Crossbred Ettawa Goats Fed Concentrates Containing by product of Traditional Fried Snack Industry with Different Levels of Urea
 A R. Asih, K G. Wiryawan, I. N. Sadia, and Kertanegara..................................187-190
<table>
<thead>
<tr>
<th>No.</th>
<th>Code</th>
<th>Title</th>
<th>Authors</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>28</td>
<td>NR-14-O</td>
<td>Restriction Feed and Refeeding Evaluation for Consumption, Feed Cost, Income Over Feed Cost, Percentage of Carcass and Meat Quality Kacang Goat</td>
<td>Bambang Suwignyo, Miftahush Shirothul Haq, Setiyono, and Edi Suryanto</td>
<td>191-197</td>
</tr>
<tr>
<td>31</td>
<td>NR-17-P</td>
<td>Effect of Choline Chloride Supplementation on Productive Performance of Ettawa Crossbred Goats</td>
<td>Supriyati Kompiang, I Gusti Made Budiarsana, Rantan Krisnan, Lisa Praharani</td>
<td>208-212</td>
</tr>
<tr>
<td>32</td>
<td>NR-18-O</td>
<td>Body Weight Gain of Donggala Bull Given Supplement Feed on Basis of Cocoa Pod Husks Fermentation</td>
<td>F.F. Munier, Mardiana Dewi, and Soeharsono</td>
<td>213-217</td>
</tr>
<tr>
<td>33</td>
<td>NR-19-O</td>
<td>Influence of Cellulolytic Bacteria from Rumen Fluid on In Vitro Gas Production of Robusta Coffee Pulp (Coffea canephora Sp.) Fermented</td>
<td>Chusnul Hanim, Lies Mira Yusiati, and Fahriza Anjaya Jazim</td>
<td>218-222</td>
</tr>
<tr>
<td>34</td>
<td>NR-20-P</td>
<td>Growth and Productivity of Brachiaria brizantha cv MG 5 under the effect of different dose of NPK fertilization</td>
<td>Nafiatul Umami, Meita Puspa Dewi, Bambang Suhartanto, Cuk Tri Noviandi, Nilo Suseno, Genki Ishigaki, Ryo Akashi</td>
<td>223-227</td>
</tr>
<tr>
<td>35</td>
<td>NR-21-O</td>
<td>Indigofera Sp as a Source of Protein in Forages for Kacang Goat in Lactation and Weaning Period</td>
<td>A. Nurhayu and Andi Baso Lompengeng Ishak</td>
<td>228-232</td>
</tr>
<tr>
<td>36</td>
<td>NR-22-O</td>
<td>Supplementing Energy and Protein at Different Degradability to Basal Diet on Total Protozoa and Microbial Biomass Protein Content of Ongole Grades Cattle</td>
<td>Dicky Pamungkas, R. Utomo, dan M. Winugroho</td>
<td>233-237</td>
</tr>
<tr>
<td>37</td>
<td>NR-24-O</td>
<td>Nutritive Evaluation of Pineapple Peel Fermented by Cellulolytic Microbe and Lactic Acid Bacteria by In Vitro Gas Production Technique</td>
<td>Lies Mira Yusiati, Chusnul Hanim and Caecilia Siska Setyawati</td>
<td>238-242</td>
</tr>
</tbody>
</table>
38. NR-25-O The Supplementation of ZnSO₄ and Zn-Cu Isoleusinate in the Local Feed Based at Last Gestation Period on Dry Matter Consumption and Digestibility and Calf Birth Weight of Bali Cattle
FMS Telupere, E Hartati, and A. Saleh ... 243-247

39. NR-26-P Local Micro Organisms (LOM) as an Activator to Enhance the Quality of Various Plant Waste as Feed
Andi Ella, A. Nurhayu and A. B. Lompengeng Ishak 248-251

40. NR-27-O Organic Acid and Inhibition of Complete Silage Ration on the Growth of Salmonella enteritidis
Allaily, Nahrowi, M. Ridla, M. Aman Yaman 252-256

41. NR-28-O The utilization of some feed supplement by using or without molasses on local male sheep on fermentation results in rumen liquid, daily live weight gain, production, C/N ratio and water content of feces
Suharyono, Teguh Wahyono, C. Ellen. K and Asih Kurniawati 257-260

42. NR-29-O Evaluation of Albaiza chinensis as Tannins Source for in Vitro Methane Production Inhibitor Agents Sheep Rumen Liquor
Anas, M. A., Yusiatil, L. M., Kurniawati, A., Hanim, C 261-265

43. NR-30-O Growth and Productivity of Sorghum Bicolor (L.) Moench in Merapi Eruption Soil with Organic Fertilizer Addition
Suwignyo, B. B. Suhartanto, G. Pawening, B.W. Pratomo 266-270

44. NR-31-P Quality and Storability of Pelleted Cassava (Manihot utilisima) Leaves var. Bitter
Ristianto Utomo, Subur Priyono Sasmito Budhi, Cuk Tri Noviandi, Ali Agus, and Fidrais Hanafi ... 271-274

45. NR-32-O Biomass Production of Pueraria javanica Using Rhizobium Inoculant and Urine Bali Cattle in East Borneo
Ida Ketut Mudhita, Nafiatul Umami, Subur Priyono Sasmito Budhi and Endang Baliarti ... 275-280

46. NR-33-P The Effect of Using Different Sources of Carbohydrates to Feed Efficiency on Indigenous Thin Tailed Male Lamb
Muktiani, A. A. Purnomoadi, E. Prayitno 281-285

47. NR-35-O Substitution of Concentrate by Protein Source Forage for Growing Heifer of Friesian Holstein (FH)
Y. Widiawati and M. Winugroho ... 286-290

48. NR-38-O The Use of Tricoderma sp. as a Starter of Fermentation Dry Teak Leaves (Tectona grandis) as Animal Feed
Yunianta and Hartatik ... 291-295
<table>
<thead>
<tr>
<th>No.</th>
<th>Code</th>
<th>Title</th>
<th>Authors</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>49.</td>
<td>NR-39-P</td>
<td>Nutritive Values of Rice Straw Fermentation Used Carbon Sources on Different Level With Various of Inoculant Levels Aspergillus niger and Lactobacillus plantarum</td>
<td>R. Agus Tri Widodo Saputro, Nono Ngadiyono, Lies Mira Yusianti, I Gede Suparta Budisatria</td>
<td>296-300</td>
</tr>
<tr>
<td>50.</td>
<td>NR-40-O</td>
<td>The Fat Protective Effect of Fish Oil, Sunflower Seed Oil and Corn Oil on Fluid Rumen Fermentation Parameters</td>
<td>Agustinah Setyaningrum, Soeparno, Lies Mira Yusianti and Kustantinah</td>
<td>301-305</td>
</tr>
<tr>
<td>51.</td>
<td>NR-41-O</td>
<td>The Effect of Supplementation of Gliricidia or Rice Bran on Liveweight Gain, Feed Intake and Digestibility of Kacang Goat Fed Mulato Grass</td>
<td>Marsetyo, Damry and Mustaring</td>
<td>306-310</td>
</tr>
<tr>
<td>52.</td>
<td>NR-42-P</td>
<td>In Sacco Feeding Value of Multi-Stage Ammoniated Palm Press Fiber</td>
<td>Armina Fariani, Arfan Abrar and Gatot Muslim</td>
<td>311-311</td>
</tr>
<tr>
<td>53.</td>
<td>NR-43-O</td>
<td>Alternative Rations to Maintain High Growth Rate of Bali Bulls Fattened with Leucaena Based Diet in Sumbawa, Eastern Indonesia</td>
<td>T. S. Panjaitan</td>
<td>312-315</td>
</tr>
<tr>
<td>54.</td>
<td>NR-44-O</td>
<td>The Use of Ramie By-Product (Bochmeria nivea) Materials as Complete Feed on the Growth and Hematology of Weaning Etawa Cross Breed Goat</td>
<td>Emmy Susanti, Ali Agus, Y. Y. Suranindiyah, and F. M. Suhartati</td>
<td>316-320</td>
</tr>
<tr>
<td>55.</td>
<td>NR-45-O</td>
<td>Study on Complete Feed Fermentation of Agricultural By-Product on Performance Etawah Goat</td>
<td>Yusdar Zakaria, Yurliasmi, Cut Intan Novita</td>
<td>321-325</td>
</tr>
</tbody>
</table>

Small Ruminant, Beef Cattle, Animal Draught and Companion Animal

<table>
<thead>
<tr>
<th>No.</th>
<th>Code</th>
<th>Title</th>
<th>Authors</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>57.</td>
<td>PPO-01-O</td>
<td>Correlation between the Slaughter Weight, Carcass Weight, with Body Measurements of Cattle in Kebumen, Central Java</td>
<td>Setiyono, Suharjono Triatmojo, Trisakti Haryadi, Dino Eka Putra</td>
<td>331-334</td>
</tr>
<tr>
<td>58.</td>
<td>PPO-02-O</td>
<td>Production of Stingless Bees (Trigona sp.) Propolis in Various Bee Hives Design</td>
<td>Agus salim, Nafiatul Umami, Erwan</td>
<td>335-338</td>
</tr>
</tbody>
</table>
59. PPO-03-P Morphological Characteristics and Performance Boerawa Goat in Tanggamus District Lampung Province
Kusuma Adhianto and M. Dima Iqbal Hamdani..........................339-342

60. PPO-04-P Growth, Carcass Production and Meat Quality of Ongole Grade Cattle, Simmental Ongole Crossbred Cattle and Brahman Cross
N. Ngadiyono, Soeparno, Panjono, Setiyono and I. Akhmadi....................343-347

61. PPO-06-O Growth and Rumen Environment of Pre-weaning Bali Calves Offered Different Forage Based Calf Supplements
IGN Jelantik, ML Mullik, TT Nikolaus, T Dami Dato, IG Mahardika, NP Suwiti, C Leo Penu, J. Jeremias, A. Tabun.................348-352

62. PPO-07-P Waste Utilization to Increase Productivity Growth Bali Cattle and Coffee Plants
I Nyoman Suyasa and IAP.Parwati..353-358

63. PPO-08-O Effect of Different Lands on Heat Tolerance Coefficient and Body Weight Gain of Ram Fat Tailed Sheep
Rachmawati, A., H. Nugroho and E. Y. Wanto................................359-359

64. PPO-09-O The Effects of Hair Colors Differences on the Performance of Etawah Grade Doe
I Gede Suparta Budisatria, Panjono, Dyah Maharani..........................360-364

65. PPO-10-P Age and Body Weight at Puberty and Service per Conception of Ongole Crossbred Heifer on Smallholder Farming System
Endang Baliarti, Bayu Andri Atmoko, Febri Aryanti, Nono Ngadiyono, I Gede Suparta Budisatria, Panjono, Tri Satya Mastuti Widi, M. Danang Eko Yulianto, Sigit Bintara........................365-369

66. PPO-11-O Performance of Three Breeds of Sudanese Cattle
Hassan Ishag Hassan Haren and Hatim Idris.............................370-373

Poultry Science

67. PU-01-P Biosecurity Measurements in Poultry Farming System in Kuwait
A.A.Alsaffar...374-376

68. PU-03-O Effect of Mating and Polymorphism Insulin Like Growth Factor Binding Protein 2 Gene on Body Weight and Heritability of Kampung Chicken
Sri Sudaryati, J.H.P. Sidadolog, Wihandoyo, W.T. Artama.................377-381

69. PU-05-O The Residue Profile of Ciprofloxacin in Broiler Muscle and Liver
Agustina Dwi Wijayanti, Ambarwati, Wa Ode Sitti Falah Ramli.............382-386
<table>
<thead>
<tr>
<th>No.</th>
<th>Code</th>
<th>Title</th>
<th>Authors</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>70.</td>
<td>PU-06-O</td>
<td>Selection for 10 Weeks Old Body-Weight on Sentul Chicken</td>
<td>Sofjan Iskandar and Tike Sartika</td>
<td>387-390</td>
</tr>
<tr>
<td>71.</td>
<td>PU-07-O</td>
<td>Analysis of Reproductive Potential and Hatchability of Naked Neck and Normal Hens</td>
<td>Jafendi H.P. Sidadolog, Tri Yuwanta, Wihandoyo, Sri Harimurti, Sri Sudaryati, Heru Sasongko and Bambang Ariyadi</td>
<td>391-396</td>
</tr>
<tr>
<td>72.</td>
<td>PU-08-O</td>
<td>Localization and Molecular Size of Mucin2 Glycoproteins Forming the Gut Mucosal Barrier in the Indonesian Indigenous Naked Neck and Normal Feathered Chickens</td>
<td>B. Ariyadi, J.H.P. Sidadolog, S. Harimurti, S. Sudaryati, and Wihandoyo</td>
<td>397-400</td>
</tr>
</tbody>
</table>

Dairy Science and Industry

<table>
<thead>
<tr>
<th>No.</th>
<th>Code</th>
<th>Title</th>
<th>Authors</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>73.</td>
<td>PPP-01-P</td>
<td>Milk Quality Of Anglo Nubian X Etawah Grade Goats And Saanen X Etawah Grade Goats At First Kidding Period</td>
<td>Lisa Praharani, Supryati, and Rantan Krisnan</td>
<td>401-405</td>
</tr>
<tr>
<td>74.</td>
<td>PPP-02-O</td>
<td>Performance of Dairy Cattle with Supplementation of Rumensin, Garlic Husk (Allium sativum) and Organic Minerals in Ration</td>
<td>Caribu Hadi Prayitno, Suwando, and Affah Noor Hidayah</td>
<td>406-409</td>
</tr>
<tr>
<td>77.</td>
<td>PPP-06-P</td>
<td>Diacylglycerol Acyltransferase1 (DGAT1) Gene Polymorphism in New Zealand Holstein Friesian Cattle under Dairy Breeding Station and Its Correlation with Milk Quality</td>
<td>SA. Asmarasari, C. Sumantri, IW Mathius, A. Anggrana</td>
<td>418-422</td>
</tr>
<tr>
<td>78.</td>
<td>PPP-07-O</td>
<td>Reaction of Cathelicidin-2 secreted from goats milk leukocytes to lipopolysaccharide</td>
<td>Moemi Nishikawa, Yukinori Yoshimura, and Naoki Isobe</td>
<td>423-425</td>
</tr>
</tbody>
</table>
PART II

Animal Breeding and Reproduction

79. PPE-01-P Identification of Pure Breed Bali Cattle by Using Molecular Approach
Endang Tri Margawati, Indriawati, Slamet Diah Volkandari and Muhammad Ridwan
..426-431

80. PPE-02-P Milk Transmitting Ability of Saanen Bucks under Intensive Management
Anneke Anggraeni..432-436

81. PPE-03-O Genetic Markers of Twinning Births of Local Beef Cattle and Its
Crossbreds in Indonesian
A. Anggraeni, S. A. Asmarasari, H. Hasinah, C. Talib and
B. Tiesnamurti..437-441

82. PPE-04-P Association of Prolactin Gene with Egg Production in PMp Ducks
T. Susanti and I. P. Sari...442-446

83. PPE-05-P Microsatellite analysis of genetic diversity in Pekin, Alabio, and their
crossbred duck populations
L. Hardi Prasetyo, T. Susanti, T. Purwadaria..447-447

84. PPE-08-P Genotypic Profile of Ettawa Grade Goat with Different Head and Neck
Color Based on MCIR Gene
Dyah Maharani, I Gede Suparta Budisatria, Panjono, Tety Hartatik and
Slamet Diah Volkandari..448-451

85. PPE-09-O Polymorphism of Promoter Prolactine Gene and Its Association with Egg
Production of Selected Indonesian Kampung Chicken (KUB)
Tike Sartika..452-452

86. PPE-10-O Qualitative And Quantitative Traits of Kokok Balenggek Chicken, the
Rare Indigenous Chicken in West Sumatera
Firda Arлина, Hafil Abbas, Sarbaini Anwar, Jamsari...............................453-457

87. PPE-11-O Phenotype Measurements of Bali Cattle Combined with Interviews
of Farmers from Multiple Locations in Indonesia as a Resource for
Development of Breeding Programs
Ann Eriksson, Endang Tri Margawati, Indriawati, Ronny Rachman Noor, Goran Andersson, Emma M Svensson..458-462

88. PPE-12-O Investigating the genetic status of Bali cattle in Indonesia using large scale
genotyping
Emma Svensson, Ann Eriksson, Ida Clemensson Lindell, Endang Tri
Margawati, Rere Indriawati, Ronny Rachman Noor and
Göran Andersson...463-463
<table>
<thead>
<tr>
<th>No.</th>
<th>Code</th>
<th>Title</th>
<th>Authors</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>89</td>
<td>PPE-14-P</td>
<td>Genetic Variation and Phylogenetic Tree of Indonesian domestic Goat</td>
<td>Tety Hartatik, Kustantinah, Ristianto Utomo and Lies Mira Yusiati</td>
<td>464-469</td>
</tr>
<tr>
<td>91</td>
<td>PRP-02-O</td>
<td>Reproduction Performance of Bali Cow at Three Areas of Bali Province</td>
<td>Andoyo Supriyanto</td>
<td>475-479</td>
</tr>
<tr>
<td>92</td>
<td>PRP-03-O</td>
<td>Blood Lipid Profile of Hypercholesterolemia Rattus norvegicus L. Fed with Sausages Containing Omega 3 and Omega 6 Fatty Acids</td>
<td>Rio Olympias Sujarwanta, Edi Suryanto, Setiyono, Supadmo, Rusman, Jamhari, Yun Erwanto</td>
<td>480-484</td>
</tr>
<tr>
<td>93</td>
<td>PRP-04-O</td>
<td>The Effect of Kayu Akway (Drymis sp) Extract on The Number of Leukocyte of The Male Mice (Mus musculus L)</td>
<td>Purwaningsih, Angelina N. Tethool</td>
<td>485-488</td>
</tr>
<tr>
<td>94</td>
<td>PRP-05-O</td>
<td>In Vitro Maturation Rate of Bligon Goat Oocytes Supplemented with Gonadotrophin</td>
<td>Diah Tri Widayati and Mulyoto Pangestu</td>
<td>489-493</td>
</tr>
<tr>
<td>95</td>
<td>PRP-06-P</td>
<td>A Preliminary Study of the Use of Hormones on the Reproductive Performance of some Breeds of Rabbits</td>
<td>Bayu D. P. Soewandi and Yono C. Raharjo</td>
<td>494-497</td>
</tr>
<tr>
<td>96</td>
<td>PRP-08-P</td>
<td>The use of vaginal smear method based on the morphology of the vaginal mucosa epithelial cells for the dairy cows cycle estrus detection</td>
<td>Riyanto, J., Sunarto, S. D. Widyawati and Lutojo</td>
<td>498-501</td>
</tr>
<tr>
<td>97</td>
<td>PRP-09-P</td>
<td>Optimization of Bovine Sperm Sexing: Modification of Column Length and Separation Time</td>
<td>Riasari Gail Sianturi and D.A. Kusumaningrum</td>
<td>502-506</td>
</tr>
<tr>
<td>98</td>
<td>PRP-10-O</td>
<td>The Detailed Motility and Velocity Characteristics of Rams Spermatozoa as Assessed by Computer-Aided Semen Analysis.</td>
<td>Ismaya</td>
<td>507-511</td>
</tr>
<tr>
<td>99</td>
<td>PRP-11-O</td>
<td>The Effect of Trehalose Level In Tris-based Medium On Sperm Membrane Integrity of Boer Goat Semen After Cooling</td>
<td>Nurul Isnaini, Trinil Susilawati and Luqman Hakim</td>
<td>512-514</td>
</tr>
<tr>
<td>No.</td>
<td>PRP-T - O</td>
<td>Title</td>
<td>Pages</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>-----------</td>
<td>--</td>
<td>------------------------</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>PRP-12-O</td>
<td>Reproductive Efficiency Of Filial Ongole (Po), Limousin And Simmental Crossbred Cattle At Situbondo District Kuswati, Doni sonta, Sri Wahyuningsih, Trinil Susilawati and Aulia Puspita Anugra Yekti.</td>
<td>515-520</td>
<td></td>
</tr>
<tr>
<td>101</td>
<td>PRP-13-O</td>
<td>Reproductive Performances of Ongole Crossbred Cattle Using Artificial Insemination Sexed Semen with Differrent Methods Trinil Susilawati, Lieyo Wahyudi, Nurul Isnaini and Aulia.</td>
<td>521-525</td>
<td></td>
</tr>
<tr>
<td>102</td>
<td>PRP-14-P</td>
<td>Physiology and Reproduction Responses of Crossing Beef Cows Aryogi and Y. Adinata.</td>
<td>526-531</td>
<td></td>
</tr>
<tr>
<td>103</td>
<td>PRP-16-O</td>
<td>Supplementation of Cysteine on Plasma Membrane Integrity of Buck Spermatozoa Sri Wahjuningsih, Nuryadi and Achadiah Rachmawati.</td>
<td>532-535</td>
<td></td>
</tr>
<tr>
<td>104</td>
<td>PRP-17-P</td>
<td>Estrous Behavior in the Thoroughbred-Indonesian Local Crossbred Mares Muhammad Danang Eko Yulianto, Bambang Purwantara, Amrozi.</td>
<td>536-540</td>
<td></td>
</tr>
<tr>
<td>106</td>
<td>PRP-21-P</td>
<td>Sperm Quality of Gembrong Goat In Bali, East Java and North Sumatera After Extended With Citrate-egg Yolk, Tris-egg Yolk and Andromedx Sigit Bintara, Dyah Maharani, I Gede Suparta, Jafendi H, Sumadi, Simon Eleuser, Aron Batubara.</td>
<td>546-549</td>
<td></td>
</tr>
<tr>
<td>109</td>
<td>PRP-24-P</td>
<td>Effect of Doe Blood Serum Supplementation to Buck Semen on the Head to Head Agglutination Test Hassan Ishag Haren, Mohamed Abd Elmoneim Salih, Abdel Aziz Makkawi and Hatim Idris.</td>
<td>557-561</td>
<td></td>
</tr>
</tbody>
</table>
Agribusiness and Livestock Socioeconomics

110. SA-01-P Determinant of Intangible Benefit and Cost in Integrated Biosystem Cattle In Yogyakarta

111. SA-02-P The Sustainability of Community Development in Area Pig Farming with Serasah System Based on Spiritual and Cultural Aspect
Suci Paramitasari Syahiani, F. Trisakti Haryadi, and Yans Pangerungan...566-570

112. SA-03-O Exploration of Potential Regional Resources for Beef Cattle Farming Development in Java, Indonesia
Rini Widiati, Tri Anggraeni Kusumastuti, Mujtahidah Anggriani Ummul Muzayyanah..571-576

113. SA-04-O Technical, Economic and Social Feasibilities of Beef Cattle Development in Bintuni Papua Barat Indonesia
T.W. Widayati, B. Santoso, J. Woran, I.U. Warsono and J.A. Palulungan...577-581

114. SA-05-P Economic Analysis and the Impact of Technology IB Livestock Buffalo of Income Farmer
Rusdiana S. and L. Praharani..582-585

115. SA-06-P Economic Analysis of the Effects of Conservation Land to Provide Feed in Dry Land Farming on the Island East
Helena Dasilva and Sophia Ratnawaty..586-595

116. SA-08-O Analysis of Champion of Milk Cluster Industry in The Province of Central Java-Indonesia
Tridjoko W. Murti, Adiarto, Soedjatmogo, B. Purbaya and R. Kawuri...596-600

117. SA-10-O Small Scale Livestock Farmers’ Disincentives for Animal Disease Prevention and How Incentives Can Be Improved: A Case of Uganda
Juliet Biira..601-605

118. SA-11-O Production Cost Evaluation and Effect of Lactic Acid Bacteria (Lactobacillus Plantarum) as Starter with Different Molasses Addition
Zaenal Bachruddin, Mujtahidah Anggriani and Afif Fakhiruddin...606-609

119. SA-12-P Livestock Commodities Income Contribution of Farming in the Village of Catur, Kintamani, Bangli
Ida Ayu Putu Parvati and Nyoman Suyasa..610-614
120. SA-13-O Assessment of the Calorie-Protein Consumption Pattern among Rural and Low-Income Urban Households in Indonesia
Mujtahidah Anggriani Ummul Muzayyanah, Sudi Nurtini, Suci Paramitasari Syahlanie.

121. SA-14-O Constraints of Value Chain in Dairy Industry in Central Java
Budi Gunto, Rochijan, Budi Prasetyo Widyobroto, Indratiningsih, Nafiatul Umami, Sudi Nurtini, and Ambar Pertiwiningrum.

122. SK-02-O The Agricultural Technology Transfer Agencies Role on Transferring the Biogas Technology to Farmers: A Study Case of Dairy Farmer’s Network Analysis in Umbulharjo Village, Yogyakarta Province, Indonesia
R. Ahmad Romadhon Surya Putra.

123. SK-03-O Combined Effect of Message Framing and Endorser Credibility to Buying Interest of Yoghurt Product
Tian Jihadhan, Suci Paramitasari Syahlanie, F. Trisakti H.

124. SK-04-O The Alternative Livestock and Sustainability of Farmers in Mexico
Ricardo E. Caicedo Rivas, A. Moreno Oceguera, A. de M. Parra Gallegos and M. Paz Calderón Nieto.

125. SK-05-P Farmers’ Perception of Etawah Grade Goat Productivity Based on the Hair Color Differences
I Gede Suparta Budisatria, Panjono, Dyah Maharani.

126. SK-06-O Regional Development for Beef Cattle Farming based on Agricultural by Product in Serdang Bedagai District, North Sumatra Province, Indonesia
Tri Hesti Wahyuni, Sya’ad Alifuddin, Ma’ruf Tafsin and Rahmanta Ginting.

127. SK-07-O Farmers Motivation in Exerting Dairy Goats at the Slope Area of Merapi Volcano
Trisakti Haryadi F., Kustantinah, Tommy Andjar C.K.

128. SK-08-O Enhancing Farmer’s Creativity in Dairy Goat Farming (A Case Study in Banyumas District)
Moch. Sugianto.

129. SK-10-O Utilization of Communication Media in the Process of Extension to Develop Farm Business at Minahasa District North Sulawesi Province
Anneke K. Rintjap, Jolanda K.J. Kalangi, Maasye T. Massiie.

130. SK-11-O The Influence of Dairy Farming Motivation on Dairy Cows Productivity in Different Disaster Prone Areas of Merapi Volcano
S. Andarwati, F. Trisakti Harvadi, B. Gunto, E. Sulastri.
<table>
<thead>
<tr>
<th>No.</th>
<th>Code</th>
<th>Title</th>
<th>Authors</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>131</td>
<td>SK-12-P</td>
<td>Potential and Opportunities of Livestock Development in 24 Locations PSDSK Assistance of BPTP Support for Food Security</td>
<td>Titim Rahmawati and Yoshi Tri Sulistyantaringsih</td>
<td>668-672</td>
</tr>
<tr>
<td>132</td>
<td>SK-13-O</td>
<td>Cattle Farmer’s Characteristics In West Timor (Case Study on Nekmese Farmers Group, Usapinonot, North Central Timor, Nusa Tenggara Timur)</td>
<td>Paulus Klau Tahuk, Endang Baliarti, Subur Priyono Sasmito Budhi and Panjono</td>
<td>673-677</td>
</tr>
</tbody>
</table>

Animal Products Technology

<table>
<thead>
<tr>
<th>No.</th>
<th>Code</th>
<th>Title</th>
<th>Authors</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>134</td>
<td>TD-01-O</td>
<td>Effects of Hibiscus sabdariffa and Schleichera oleosa Liquid Smoke on Lipid Content, Lipid Oxidation and Residual Nitrite in Se’i (Rotenese Smoked Beef)</td>
<td>Gemini E.M. Malelak, I.G.N. Jelantik, Maria R. Denoratu, Geertruida M Sipahelut, I.G.N. Jelantik</td>
<td>683-687</td>
</tr>
<tr>
<td>135</td>
<td>TD-02-O</td>
<td>Chemical Composition and Antioxidative Potential of Chicken Sausage with Substitution of Tempe Jamhari, Yuny Erwanto, Listia Komasari Nurhanifah</td>
<td></td>
<td>688-692</td>
</tr>
<tr>
<td>136</td>
<td>TD-04-O</td>
<td>In Vitro Antioxidant Activity of Beef Lung Protein Hydrolysates Kothibul Umam Al Awwaly, Suharjono Triatmojo, Wayan T. Artama, Yuny Erwanto</td>
<td></td>
<td>693-693</td>
</tr>
<tr>
<td>137</td>
<td>TD-05-O</td>
<td>Carcass Production and Chevon Quality of Kacang Buck Reared Traditionally in Grobogan, Central Java, Indonesia Retno Adiwiniarti, I Gede Suparta Budisatria, Kustantinah, Rusman</td>
<td></td>
<td>694-698</td>
</tr>
<tr>
<td>138</td>
<td>TD-06-O</td>
<td>Fraud Identification in Meatballs Product Using Porcine Detection KIT and Multiplex Polymerase Chain Reaction Methods Tridjoko Murti, Christina Admantin, Umar Santoso, Dyah Widiasih, Aris Haryanto</td>
<td></td>
<td>699-703</td>
</tr>
<tr>
<td>139</td>
<td>TD-07-O</td>
<td>Identification of Dog Meat Species by Polymerase Chain Reaction (PCR) Dyah Ayu Widiasih, Cynthia Debbi Ratnasari, Yatri Drastini, Tridjoko Wisnu Murti</td>
<td></td>
<td>704-708</td>
</tr>
<tr>
<td>140</td>
<td>TD-08-O</td>
<td>Study on the Physico-Chemical Characteristics and Microstructure of Meat from Goat Given Ration Papaya Leaves (Carica papaya L.) Muh. Ichsan Haris, Soeparno, Umar Santoso, Rusman</td>
<td></td>
<td>709-713</td>
</tr>
<tr>
<td>paper_number</td>
<td>title</td>
<td>authors</td>
<td>pages</td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>---</td>
<td>----------</td>
<td></td>
</tr>
<tr>
<td>141.</td>
<td>The Effect of Acetic Acid Concentration and Curing Time on the</td>
<td>Mcity Sompie, S. E. Siswosubroto and J. H. W Pontoh</td>
<td>714-718</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Characteristics of Native Chicken Legs Skin Gelatin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>142.</td>
<td>Antibacterial Activity of Fermented Milk Cultured with Yeast-LAB and</td>
<td>Yurliasni, Yusdar Zakaria, Zuraida Hanum and Sitti Wajizah</td>
<td>719-723</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Added Sweet Corn Against Pathogenic Bacteria</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>143.</td>
<td>Effect of Storage Period Eggs on Egg Quality Characteristics Naked Neck</td>
<td>Tatan Kostaman and Soni Sopiyana</td>
<td>724-728</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chicken</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>144.</td>
<td>Study The Quality of Multi Probiotic Fermented Milk Made from Cow’s</td>
<td>Eni Robiyati, Tridjoko Wisnu Murti, Harisuddin Lutfan Jundi, Fajar Ramadhan</td>
<td>729-732</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Milk and Goat’s Milk</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>145.</td>
<td>Development of Halal Goat Cheese using Rennet Like from Vegetable</td>
<td>Widitya Tri Nugraha, Tridjoko Wisnu Murti, Irma Sri Novitasari, Tri Kartika Sari, Gangga</td>
<td>733-737</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Source as Replace to Those of Commercial Rennet Source</td>
<td>Mucita, Gregorius Riswan Timur Wijakangka</td>
<td></td>
<td></td>
</tr>
<tr>
<td>146.</td>
<td>The Characteristics of Salted Chicken and Duck Egg by using</td>
<td>Nurliyani, Anggi Hartawan, Yulianto Adi Nugroho, Indratiningsih</td>
<td>738-742</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Traditional Roasting</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>147.</td>
<td>Capability of Isolates Probiotic Bacteria, Isolated From Spontaneous</td>
<td>Afriza Yelnetty, Purwadi, Arie Mirah</td>
<td>743-743</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fermented goat Milk as Starter In milk Fermentation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>148.</td>
<td>Changes in physico-chemical and sensory characteristics of</td>
<td>Juni Sumarmono, Mandiati Sulistyowati, and Triana</td>
<td>744-748</td>
<td></td>
</tr>
<tr>
<td></td>
<td>concentrated yogurt made from goat milk during storage</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Waste and Environmental Issues

<table>
<thead>
<tr>
<th>paper_number</th>
<th>title</th>
<th>authors</th>
<th>pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>149.</td>
<td>Development of New Biostarter Medium Using Local Raw Materials for</td>
<td>Nanung Agus Fitriyanto, Suharjono Triatmojo, Tri Sunu Dane Wibawa</td>
<td>749-753</td>
</tr>
<tr>
<td></td>
<td>Composting of Elephant Feces</td>
<td></td>
<td></td>
</tr>
<tr>
<td>150.</td>
<td>Implementation of Good Manufacturing Practices System in Halal</td>
<td>Edi Suryanto, Tridjoko Wisnu Murti, Yatri Drastini, Rusman, Bastoni, Umar Al Faruqi and</td>
<td>754-760</td>
</tr>
<tr>
<td></td>
<td>Certified Chicken Slaughterhouses in Daerah Istimewa Yogyakarta</td>
<td>Ismatullah Salim</td>
<td></td>
</tr>
</tbody>
</table>
151. TLL-03-O The Influence of Tanning Material Difference on the Physical Quality of the Skin of Puffer Fish (Arothion reticularis)
RLM. Satrio Ari Wibowo, Titik Anggraini, Ambar Pertiwininggrum.................................761-765

152. TLL-04-P The Effect of Composting Liquid Organic Fertilizer Processing Residues on Compost Quality
Eulis Tanti Marlina, Yuli Astuti Hidayati,
Tb. Benito A. Kurnani.................................766-769

153. TLL-05-P Utilization of Bee Nest Waste as a Natural Disinfectant on Hatching Eggs Poultry
Ellin Harlia, Andriyanto, Eulis Tanti Marlina,
Denny Suryanto.................................770-773

154. TLL-06-P Quality Vermicompost (Content N, P, K) From Beef Cattle Waste Treatment Through Integrated
Yuli Astuti Hidayati, Sudiarto, and Wowon Juanda.................................774-777

155. TLL-08-O The Application of Secang Natural Dye on Sheep Leather Crust Suede Using Ikat Jumputan Method
Entin Darmawati, Suharjono Triatmojo and Diana Ross Arief.................................778-784

156. TLL-09-O New Technique to Detect Pig Hair by Immunochromatographic Rapid Test
Yatri Drastini, Sumantri, Christina Yuni Admantin,
Tridjoko Wisnu Murti.................................785-788

157. TLL-10-O Isoptericola sp. A10-1, Chitinase Producing Actinobacterium Isolated from Indonesian Tropical Shrimp Pond Waste Water
Amrih Prasetyo, Lies Mira Yusiani, Yuny Erwanto, Wihandoyo,
Nanung Agus Fitriyanto, Tomoyuki Nakagawa and Takashi Hayakawa.................................789-792

158. TLL-11-O Production and Application of Keratinase Enzyme of Bacillus spp. Isolate by Using Raw Feather as Substrate
Theresia Galuh Wandita, Nanung Agus Fitriyanto, Suharjono Triatmojo.................................793-797

159. TLL-12-O Different Effect on the Quality of Organic Fertilizer Fermentor of Ongole Crossbred Cattle’s Feces
Dedes Amertaningtyas, Trinil Susilawati and
Lilik Eka Radiati.................................798-802

160. TLL-13-P Implementation of Good Manufacturing Practices System in Halal Certified Cattle Slaughterhouses in Daerah Istimewa Yogyakarta
Bastoni, Nasrul Hidayat, Edi Suryanto, Rusman, Tridjoko Wisnu Murti, Yatri Drastini.................................803-809
Exploration of Potential Regional Resources for Beef Cattle Farming Development in Java, Indonesia

Rini Widiati¹, Tri Anggraeni Kusumastuti¹, Mujtahidah Anggriani Ummul Muzaynah¹

¹Faculty of Animal Science, Gadjah Mada University, Yogyakarta, Indonesia.
Jl. Fauna 3, Bulaksumur Campus, Yogyakarta – Indonesia
Corresponding e-mail: riniwidiati2014@gmail.com

ABSTRACT: National beef production in Indonesia from year to year has been always low compared with the consumer demand, thus it still depend on imports. The purposes of this study were: (1) to identify factors related to the regional resources which support the development of cattle farming, (2) to determine the potential resources for the development of beef cattle farming, and (3) to improve beef cattle development strategy based on the potential resources. The location taken were two provinces in Java, namely East Java Province and Special Region of Yogyakarta. Time series data from 2007 to 2012 as variables in this study were taken as each 7 and 4 regency as the samples. These data were analyzed by Multiple Regression Model using Ordinary Least Square method. The stationary test was done before using time series data by unit root tests of Augmented Dickey-Fuller (ADF). Dependent variable in the model was beef cattle population in each regency per year. Meanwhile the independent variables were population, number of farmers, price of cattle, number of cattle slaughtered, number of cattle that exit from region, number of cattle that enter to region, rice production, corn production, soybean production, cassava production in each region per year and dummy location. The results of this research showed that enhancement of corn and soybean production in a region was potential resource to increase the population of beef cattle. Moreover, the beef cattle price per kg of live weight and number of beef cattle slaughtered in a region need to be considered as the factors for strategies in developing beef cattle farming. Location has significant effect on the beef cattle development.

Keywords: Development, beef cattle farming, regional resources, Java

INTRODUCTION

Indonesia is an agricultural country because 85% of the population had livelihood as farmers, with an average ownership of arable land below 0.5 ha especially in Java. Farmers generally have a livestock including beef cattle with small scale 1-3 Animal Unit (AU), as an activity that was complementary and supplementary to the crops farming with the aim to increase their farm income. According to Stur, et al., (2013) livestock production in developing countries can be an important pathway for rural communities to get out of poverty. Based on data from the Ministry of Agriculture of the Republic of Indonesia (Suswono, 2012; Directorate General of Livestock and Animal Health, 2008 and 2013), the national consumption of beef for Indonesian society had been continuing to increase from 2007 to 2012 that is 396.00 to be 508.90 thousand tons or an average of 5.26% per year. In the same period, national production has only increased of 4.61% per year while imports of beef by an average of 36.98% per year. Therefore, the development of beef cattle was good employment opportunities for farmers in the rural. The opportunity was supported by the nature of Indonesia that were geographically and demographically has a wealth of natural resources that were believed to have comparative and competitive advantages for beef cattle business (Rauf, et al., 2014). However, there were still various kinds of constraints in development of beef cattle farming such as capital, technology and human resource capabilities (Rauf, et al., 2014; Priyanto, 2011; Widiati, 2006). The main reason of the various constraints were the dynamics of agriculture resources such as soil types, climate conditions, rainfall, social and cultural conditions of the population and others. The dynamics of the use of resources that could improve crop yields will
have impact on the increase the supply of animal feed as an important resource for the livestock development (Teklewald, et al. 2013).

This study tried to seek an alternative to improve smallholder beef cattle based on the potential resources of the region to support the existing government programs. Accumulation of regional resources can provide greater inputs for production than the individual approach farmers with limited land, capital and labor. It was needed to support previous research which suggests that one strategy to develop of the beef cattle farming industry in Indonesia was encouraging of investors to develop forage industry as feed suppliers which has processed with touch of technology to make it easier for farmers to access in large quantities and low prices (Widiati, 2014). Administratively, a region can be village, sub-district, district or regency, and city which have extensive agricultural land resources and population as labor forces as well as consumer for goods and services. Furthermore, population was also the owner of capital on the region. County-level yield data can be used in applied crop insurance policy in place of farm level (Gerlt, S. et al. 2014).

A production process of agricultural including beef cattle farming in a region can be described in the following function (Penson, et al., 2002):

\[Y = f(A, L, I, M) \]

Where: \(Y \) = output or product, \(f \) is a function of \(A = \) area/ and for various activities of farming, \(L = \) labor, \(I = \) investment/capital and \(M = \) management or technology.

Agricultural resources such as crops and beef cattle are interrelated, dependent, and supporting to each other. Therefore, the availability of resources in a region is very important to be studied in an effort to increase the population and production of beef cattle.

MATERIALS AND METHODS

The Province of East Java and Special Region of Yogyakarta (DIY) which were as regional suppliers of beef cattle represented as sample location. Furthermore was taken 7 regencies of the 29 regencies in East Java and four regencies or of all in DIY. This study were using time series data collected for 2007-2012 (6 years) for every sample regions that was available completely from relevant institutions related to the research, that were the Central Bureau of Statistics, Abattoirs office, Department of Animal Husbandry, and the Department of Agriculture in each regency. The existence of beef cattle development in an area can be measured from the increase in beef population from year to year as dependent variable that was included on the multiple linear regression model as shown equation 2.

\[
\text{BCP}_{it} = \beta_0 + \beta_1 \text{Pop}_{it} + \beta_2 \text{NF}_{it} + \beta_3 \text{PC}_{it} + \beta_4 \text{CS}_{it} + \beta_5 \text{CE}_{it} + \beta_6 \text{RProd}_{it} + \beta_7 \text{CrProd}_{it} + \\
\beta_8 \text{SProd}_{it} + \beta_9 \text{CsProd}_{it} + \alpha \text{ID}_{it} + e_t
\]

The notations were:

- \(\text{BCP}_{it} \) = beef cattle population as the dependent variable in the region \(i \) in year \(t \) (head);
- \(\beta_0 \) = intercept;
- \(\beta_1, \beta_2, \beta_3 \ldots \beta_{10} \) = regression coefficient of independent variable of \(X_{1i}, X_{2i}, X_{3i} \ldots X_{10i} \);
- \(\text{Pop}_{it} \) = population in region \(i \), in the year of \(t \) (person);
- \(\text{NF}_{it} \) = the number of farmers in region \(i \), and year \(t \) (person);
- \(\text{PC}_{it} \) = price of cattle in region \(i \), and year \(t \) (IDR/kg live weight);
- \(\text{CS}_{it} \) = the number of cattle slaughtered in region \(i \), and year \(t \) (head/yr);
- \(\text{CE}_{it} \) = the number of cattle that exit from region \(i \), and year \(t \) (head/yr);
- \(\text{RProd}_{it} \) = rice production in region \(i \), and year \(t \) (ton/yr);
- \(\text{CrProd}_{it} \) = corn production in region \(i \), and year \(t \) (ton/yr);
- \(\text{SProd}_{it} \) = soybean production in region \(i \), and year \(t \) (ton/yr);
- \(\text{CsProd}_{it} \) = cassava production in region \(i \), and year \(t \) (ton/yr);
The 6th International Seminar on Tropical Animal Production
Integrated Approach in Developing Sustainable Tropical Animal Production
October 20-22, 2015, Yogyakarta, Indonesia

\[\alpha_t D_t = \text{dummy of location, } 1 = \text{in region i for East Java province, in year } t; \]
\[0 = \text{in region i for Special Region of Yogyakarta in year } t; \]
\[e_t = \text{error term, } i = 1, 2, \ldots, 11; \text{region to } 1, 2, 3, \ldots, 11 \]
\[t = 1, 2, \ldots, 6; \text{year to } 2007, 2008, 2009, 2010, 2011, 2012 \]

Estimation and validation of the model started from the correction of the time series data by using tests such as stationer, co-integration, and residual tests. The stationer tests considered herein are unit root tests of Augmented Dickey-Fuller (ADF). The occurrence of co-integration, if there was a long-term relationship between independent and dependent variables using Johansen Co-integration test through the trace statistics. The existence of independent variables that are mutually co-integrated needed to be corrected with Error Correction Model / ECM (Greene, 2003; Gujarati, 2003). Furthermore, the coefficient of Regression estimated by using Ordinary Least Square method (OLS). The stationary test of time series data was used to make the variance became constant according to OLS assumptions, because there was a possibility of lag intercorrelation that might affect inconsistency of variance. The accuracy of the model was tested using a hypothesis test consists of a coefficient of determination (R^2), Overall test (F test) and partial test (t test). All of the above tests was done with the help of a computer using Eviews 6th.

RESULTS AND DISCUSSION

Beef cattle farming and its supporting resources in Java, Indonesia

Java island including the large islands in Indonesia which was inhabited by 138.794 million people (44.74%) and having plains area of 192,257,000 ha (7.23%) (Central Bureau of Statistics, 2013). While, East Java province has the largest population of beef cattle, which was in 2012 reached 5,019,445 heads, with population of 37.56 million people and 1,913,213 ha of agricultural land, followed by DIY which has beef cattle population of 414,381 heads, with a population of 3.71 million people and 132,987 ha of agricultural land. East Java Province and DIY had a dense population, but population of beef cattle can still above the national average of Indonesia. Beef cattle breeding that produce bulls as a supplier of beef was usually cultivated by farm households. Generally, farmers in Java grow crops to meet the needs of staple food such as rice, corn, soybeans, peanuts, cassava and be accompanied its byproducts that used as animal feed. While outside of Java are still many forests and plantations, especially oil palm has a byproduct as a source of quality livestock feed. Nevertheless, generally the type of crop orientation is largely determined by the existing agro-ecologies in a region (Silvia and Matus, 2014).

The population of cattle and beef production in each region has fluctuated (Table 1). In 2011 there was a striking increase in livestock population, because in that year there are government assistance programs that distribute cows to farmers. However, to make a beef cattle development strategy requires the supporting factors as a basic for further policy.

<table>
<thead>
<tr>
<th>Year</th>
<th>East Java</th>
<th>DIY</th>
<th>Indonesia</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Amount (heads)</td>
<td>increase (%)</td>
<td>(heads)</td>
</tr>
<tr>
<td>2007</td>
<td>2,705,605</td>
<td>25.11</td>
<td>257,836</td>
</tr>
<tr>
<td>2008</td>
<td>3,384,902</td>
<td>4.68</td>
<td>269,927</td>
</tr>
<tr>
<td>2009</td>
<td>3,458,948</td>
<td>2.19</td>
<td>285,043</td>
</tr>
<tr>
<td>2010</td>
<td>3,745,453</td>
<td>8.28</td>
<td>290,949</td>
</tr>
</tbody>
</table>

Table 1. The population of cattle and beef production in east Java, DIY and Indonesia
Factors that influence to the development of beef cattle population

Based on the results of the unit root test, at the level of stationary there are three independent variables are stationary, namely the CEx, CEn and CsProd (ADF Prob <0.05). The data that are not stationary in order to become stationary, then it differentiated at the first difference level in the unit root analysis showed that all of independent variables have been stationary (ADF Prob <0.01). The data that are not stationary before the first difference level, there are possibility of co-integration which are the long-term relationships between independent and dependent variables. Therefore it was necessary to the co-integration testing considered herein using Johansen Co-integration test. The result of Johansen Co-integration test, there are three variables that are not mutually co-integrated, namely BCP with independent variables of CS, CsProd and SProd in which the value of Trace statistic was less than the critical value at 5% confidence level (P <0.05). Other independent variables were co-integrated with each other therefore in the short term there may be disequilibrium so that necessary to correction, in this research using the error correction model (ECM). Based on the ECM analysis showed that all independent variables have a residual value of significance level P <0.01 so that the ECM model were valid and the data can be used for further analysis. Ouedraogo and Bako (2014) have also conducted models of analysis of time series data using these methods. The regression analysis of the data that had been corrected was shown in Table 2.

Table 2. Results of regression analysis of the factors that influence to the development of beef cattle population.
The 6th International Seminar on Tropical Animal Production
Integrated Approach in Developing Sustainable Tropical Animal Production
October 20-22, 2015, Yogyakarta, Indonesia

<table>
<thead>
<tr>
<th>Model</th>
<th>CEn</th>
<th>RProd</th>
<th>CrProd</th>
<th>SProd</th>
<th>CsProd</th>
<th>Dummy location</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.0332</td>
<td>-0.1275</td>
<td>0.3623</td>
<td>0.1234</td>
<td>-0.0492</td>
<td>0.5618</td>
</tr>
<tr>
<td></td>
<td>0.0337</td>
<td>0.1190</td>
<td>0.0976</td>
<td>0.0357</td>
<td>0.0414</td>
<td>0.2371</td>
</tr>
<tr>
<td></td>
<td>0.8994</td>
<td>-1.0712</td>
<td>3.7119</td>
<td>3.4587</td>
<td>-1.1899</td>
<td>2.3693</td>
</tr>
<tr>
<td></td>
<td>0.3734</td>
<td>0.2900</td>
<td>0.0006***</td>
<td>0.0012***</td>
<td>0.2406</td>
<td>0.0224**</td>
</tr>
</tbody>
</table>

R-squared	0.8856	F-statistic	30.2566
Adjusted R-squared	0.8564	Prob(F-statistic)	0.0000
Number of observation	66		

Source: Results of data analysis

From Table 2 it could be observed that the adjusted $R^2 = 0.8556$ by F test ($P<0.001$), it meant that the independent variables together could explain 85.56% to the development of beef cattle population, while the rest were described other factors that was not included in this model. Partially, the price of beef (PB), corn production (CrProd), soybean production (SProd) had positive influence to the development of beef cattle population with significant level of $P<0.01$, and the dummy of location (D) with $P<0.05$, meanwhile, slaughtering of cattle (SC) in an area had negative effect of $P<0.1$. Beef prices (BP) based on live weight gave a positive response to the increase in population, thus the cattle pricing policy that was greater than the cost of production should be considered in an effort to increase of production and population of beef cattle in Indonesia. Corn and soybean production had a significant positive effect on the development of beef cattle in the region. The rice production had not significant effect, although the rice plant produced straw as potential feed for beef cattle. This is because the rice productions were generally need to be managed intensively which labor intensive, thus there was no more time left to raise the cattle. Corn and soybean production had a significant positive effect on the development of beef cattle in the region. The rice production had not significant effect, although the rice plant produced straw as potential feed for beef cattle. This is because the rice productions were generally need to be managed intensively which labor intensive, thus there was no more time left to raise the cattle. Production of rice straw in Indonesia is only about 33% for animal feed, 50% were burned and 17% for the industry (Shaphan 2008 in Herawati, 2013). The production of corn, soybeans and rice would be followed by a byproduct in the form of straw as cattle feed. The protein content in soybean straw was the highest (16.6%), followed by the content in corn straw (7.7%) and rice straw (4.10%). Moreover among these 3, corn straw was the most preferred by beef cattle (Emma, 2011; Hartadi et al. 2005). The number of cattle slaughtered had negative significant effect on the cattle population in an area ($P<0.1$). Therefore, to develop the beef cattle population in a region that the quota of slaughtering should be set in accordance with the number of cattle population. Furthermore, dummy location had significant differences which meant that each location had different pattern of beef cattle development.

CONCLUSIONS

The development of beef cattle in Java should be directed to areas that suitable for corn and soybean crops. Furthermore, the price of beef per kg of live weight which was an incentive instrument for beef cattle farmers can be used as a basis for policy making in order to encourage the development of beef cattle farming, likewise beef cattle slaughtering in a region. Overall, the availability of resources in each region should be considered in the development planning of beef cattle farming.
REFERENCES

CERTIFICATE

This is to certify that

RINI WIDIATI

has participated as

ORAL PRESENTER

at the 6th International Seminar on Tropical Animal Production
"Integrated Approach in Developing Sustainable Tropical Animal Production"
Faculty of Animal Science Universitas Gadjah Mada, Yogyakarta-Indonesia
October 20th - 22nd, 2015

Dean
Faculty of Animal Science
Universitas Gadjah Mada

Chairman
Organizing Committee

Prof. Dr. Ali Agus

Prof. I Gede Suparta Budisatria, Ph.D