The 4th
INDONESIAN
BIOTECHNOLOGY
CONFERENCE
(an International Forum for Biotechnology)

PROCEEDINGS

“Biotechnology for better food, health and environment”
Bogor, 5-7 August 2008

INDONESIAN BIOTECNOLOGI CONSORTIUM
2009
The 4th
INDONESIAN
BIOTECHNOLOGY
CONFERENCE
(an International Forum for Biotechnology)

PROCEEDINGS
The 4th
INDONESIAN
BIOTECHNOLOGY
CONFERENCE
(an International Forum for Biotechnology)

PROCEEDINGS

"Biotechnology for better food, health and environment"
Bogor, 5–7 August 2008

INDONESIAN BIOTECHNOLOGY CONSORTIUM
2009
Cataloging-in-Publication Data

Proceedings The 4th Indonesian Biotechnology Conference:
Biotechnology for Better Food, Health, and Environment/Hari Eko
ix + 65 pp.; 21 x 29,7 cm

1. Biotechnology

660.6
The 4th
INDONESIAN
BIOTECHNOLOGY
CONFERENCE

PROCEEDINGS
5–7 August 2008

IPB International Convention Center
Jalan Raya Pajajaran, Bogor-Indonesia

Hosted by:
Indonesian Biotechnology Consortium
(KBI)
The 4th Indonesian Biotechnology Conference
(an International Forum for Biotechnology)

"Biotechnology for better food, health and environment"

EDITORS:

CHIEF:
Hari Eko Irianto

MEMBERS:
Amarila Malik
Bambang Prasetya
Ekowati Chasanah
Hayati Minarsih
Karden Mulya
Komang G. Wirayawan
Puspita Lisdiyanti
Satya Nugroho
Setiarti Sukotjo
Suharsono
Tri Muji Ermayanti
Wahyu Purbowasito

TECHNICAL EDITORS:
Cahya Ningrum
Eko Wahyu Putro
Hariyatun
Rudiyanto
TABLE OF CONTENTS

Table of Contents... ix
Foreword from Chairman of Organizing Committee .. xxii
Foreword from Chairman of Indonesian Biotechnology Consortium xxiii
Welcoming Address from Bogor Agricultural University Rector xxv

Keynote Speech ... 1

The State Minister for Research and Technology ... 3

Indonesian Biodiversity and its Future Value for Achieving MDGs and Adaptation to the Global Climate Change
(Prof. Dr. Endang Sukara) ... 7

Invited Speakers: ... 17

1. Molecular Breeding of *Jatropha curcas* as a High-Yield Oil Crop JST and NSF New Projects
 (Prof. Akiho Yokota) ... 19

2. Current Status of Investment in Biotechnology in Indonesia
 (Dr. Didiek Hadjar Goenadi) .. 29

3. Biotechnology Development in Iran (Abstract)
 (Prof. Nasrin Moazami) .. 37

4. Molecular Signaling in Rice Disease Resistance (Abstract)
 (Prof. Ko Shimamoto) .. 39

5. Enhancement of Nutrition in Rice Using Modern Biotechnology (Abstract)
 (Dr. Gerard Barry) .. 41

 (Dr. Harvey Glick) .. 43
7. Recent Developments in Food Biotechnology (Abstract)
(Dr. Dedi Fardiaz) ... 45

8. Metabo-omics and its Use in the Indosoi Program (Abstract)
(Dr. Sjaak van Heusden) ... 47

9. Plants as Biopharmaceuticals Factories (Abstract)
(Prof. Haleh Hashemi Sohi) ... 49

10. Enhanced Recombinant Protein Productivity by Genome Reduction in Bacillus subtilis (Abstract)
(Prof. Naotake Ogasawara) .. 51

(Prof. Young Je Yoo) .. 53

12. Algae for Biofuel: Collection of Candidate Microalgal Strains (Abstract)
(Prof. Hiroshi Sekiguchi) ... 55

13. Estimating and Improving Cold Filter Plugging Points by Blending Biodiesels with Different Fatty Acid Contents (Abstract)
(Prof. Don-Hee Park) .. 57

14. Molecular Biomechanics of Sex Differentiation (Abstract)
(Dr. Fatchiyah) ... 59

15. Bacterial Community Dynamics During the Development of Shrimp Larvae (Litopenaeus vannamei) (Abstract)
(Dr. Antonius Suhanto) ... 61

16. Development of Stem Cell Research in Indonesia (Abstract)
(Dr. Ferry Sandra) ... 63

17. α-Amylases and their Importance in Biotechnology (Abstract)
(Dr. Dessy Natalia) .. 65

18. Proteomics for Cancer Biomarker Discovery (Abstract)
(Dr. Indra Bachtiar) .. 67

19. LC-MALDI Proteomic Analysis Platform for Protein Biomarker Discovery (Abstract)
(Zhaoqi Zhan, PhD.) ... 69

Bogor, 5-7 August 2008
Concurrent Session and Poster Presentations:

A. Medical Biotechnology

1. Detection and Identification of Human Enteroviruses among Healthy Children in Antajaya, Bogor (O9)
 (Rifqiyyah Nur Umami, Rama Dhenni, Ahmad Jajuli, Yorihiro Nishimura, Hiroyuki Shimizu & Andi Utama) 75

2. Detection of Dapsone and Rifampicin Resistance on Mycobacterium leprae Isolates from East Java (O21)
 (Ratna Wahyuni, Dinar Adriaty, Iswahyudi, Ni Putu Susari, Indropo Agusni, Masanori Matsuoka & Shinzo Izumi) 87

3. Genotyping Analysis of Mycobacterium leprae Isolates in Leprosy Endemic Area in East Java by TTC Repeat Variation (O22)
 (Dinar Adriaty, Ratna Wahyuni, Iswahyudi, Mudatsir, Cita Rosita Prakoeswa, Indropo Agusni & Shinzo Izumi) 95

4. Labelling Monoclonal Antibodies to Human Autoantibodies Gad_{65}
 by Alkaline Phosphatase for Early Detection Type 1 Diabetic Patients (P11)
 (Aulanni'am, Djoko Wahono Soetamadji & Sutiman Bambang Sumitro) .. 103

5. Screening of Hepatitis C Virus RNA Helicase Inhibitor from Indonesian Indigenous Actinomycetes (O10)
 (Ainun Hairany, Ahmad Jajuli, Muhammad Ridwan, Neneng Hasanah, Puspita Lisdiyanti & Andi Utama) ... 109

6. Screening of Japanese Encephalitis Virus RNA Helicase Inhibitor from Indonesian Actinomycetes (O11)
 (Andhyni Eriel Tombe, Muhammad Ridwan, Lina Elfita, Shanti Ratnakomala, Puspita Lisdiyanti & Andi Utama) ... 117

7. Purification of Extracellular Protein from Streptomyces chartreuis 5-095 and its Inhibition Activity to RNA Helicase of Japanese Encephalitis Virus (P1)
 (Shanti Ratnakomala, Anja Meryandini, Puspita Lisdiyanti & Andi Utama) .. 127
8. Polymorphism Analysis of Polyketide Synthase Gene from Actinomycetes Genome DNA of Taman Nasional Gunung Halimun Soil by Using Metagenome Method (O58) (Irvan Faizal, Retno Lestari, Frans Kurnia, Abdul Latif, Dudi Hadianto, Nila Kusumawati, Indra Rachmawati, Bambang Marwoto & Wahyu Purbowasito) .. 137

9. Isolation and Identification of Endophytic Actinomycetes and their Antifungal Activity (O56) (Sitti Inderiati & Christopher M.M. Franco) ... 145

10. Combining Induced Mutation on Aspergillus flavus for Improvement of Kojic Acid Production (O46) (Herman Suryadi, Maksum Radji, Harmita & Rounita Devianasari) 155

11. Folic-Acid Assay Technique by Protein-Ligand Binding Method Using Folate Binding Protein from Cow Milk as Binder Protein (O35) (Mohamad Sadikin, Mardiana & Indriati P. Harahap) .. 163

12. The Effect of Hydroxocobalamine Therapy on β-Pancreas Cell Damage of Type 1 Diabetes Mellitus White Mouse (Rattus norvegicus) Exposed by Multiple Low Dose of Streptozotocin (MLD-STZ) (O48) (Muhammad Sasmito Djati, Ika Rahmatul Layly & Aulanni’am) 169

15. Cloning and Over Expression of Gene Encoding for GRA-1 Protein from Local Isolate of Toxoplasma gondii (P10) (Etty Widayanti, P. Kusumaningsih, D. Indrasanti & Wayan Tunas Artama) ... 195
16. Heterologous Expression and Production of Recombinant Human Erythropoietin (rhEPO) in Pichia pastoris (P12)
(Adi Santoso, Ratih Asmana Ningrum, Sri Kartika Wijaya, Neng Herawati, Asrul Muhammad Fuad, Andri Wardiana, Arizah Kusumawati & Yana Rubiyana) .. 203

17. Studies of Antibacterial Activity from Cinnamon Extract towards the Damage of Pathogenic Bacteria (P15)
(Sarinaul Irianti Manurung, Adolf Parhusip & Francisca Kirana Wibawa) .. 211

18. Study on Antibacterial Activity from “Temulawak” (Curcuma xanthorrhiza Roxb.) Rhizomes against Pathogenic Microbes Cell Destruction (P16)
(Sylviana Husein, Adolf Parhusip & Elisa Friska Romasi) 223

19. Increasing of Carotene Production from Local Isolate when Using Additional Supernatant from Bacterial Culture in their Growth Medium (O59)
(Sulistyow Emantoko, Paulina Tjandra, Irma Nirmalasari & Elisawati Wonomadi) .. 231

B. Bioenergy

20. Enzymatic Hydrolysis of Lignocellulosic Bagasse for Bioethanol Production
(Muhammad Samsuri, Misri Gozan, Bambang Prasetya & Muhammad Nasikin) .. 239

21. Bioethanol from Hydrolysates of Corncob Residue (O1)
(Titi Candra Sunarti, E.T. Resita, H. Surbakti & Nur Richana) 249

22. Dilute Acid Pretreatment and Enzymatic Saccharification of Oil Palm Empty Fruit Bunch Fiber for Ethanol Production (O13)
(Yani Sudiyani, S. Alawiyah, J. Waluyo & Euis Hermiati) 257
C. Marine and Fisheries Biotechnology

23. Application of Real Time PCR for Fish and Seafood Authentication (O38)
 (Dwiyitno) ... 267

24. The Development of Cell Culture for Production of Monoclonal Antibody for Diagnostic Tool in Infectious Diseases of Grouper (O25)
 (Uun Yanuhar, Sukoso, Sumarno & Aris Widodo) ... 277

25. Selection of Probiotic Bacteria to Improve the Health of White Shrimp Litopenaeus vannamei towards White Spot Syndrome Virus (WSSV) (O26)
 (Tb. Haeru Rahayu, Indrawati Gandjar, Etty Riani & In Siti Djunaidah) 289

26. Enzymatic Deproteinization Method in Chitin Isolation of Crab’s Shell Waste (O37)
 (Yudianta, Yenny Risjani & Fithri Choirun Nisa) ... 301

27. Isolation of Cytotoxic Compound from Nepthea sp. Soft Coral (O27)
 (Muhammad Nursid, Nurrahmi Dewi Fajarningsih & Thamrin Wikanta) 309

28. The Effects of Sponge Haliclona sp. Extract on Liver Histopathology of Swiss Mice (P33)
 (Neni Susilaningsih, Agus Trianto, Retno Murwani & Ari Sariningrum) 317

29. Subchronic Toxicity Test of Gorgonian Isis hippuris Extract as a Natural Anticancer Candidate: Liver Histopathological Studies in Swiss Mice (P34)
 (Retno Murwani, Agus Trianto, Neni Susilaningsih & Valentine Yunia Sari) 323

30. Effect of Subchronic Administration of Ethanolic Extract of Sponge Haliclona sp. in Combination with Gorgonian Isis hippuris on Liver Histopathology of Swiss Mice (P32)
 (Agus Trianto, Neni Susilaningsih, Retno Murwani & Widagdo) 331
D. Food Biotechnology

31. Phytase-Produced *Bacillus* and *Serratta* from Lime Soil in Gresik East Java (P19)
 \(\text{(Leny Yuanita, Aline Puspita K., Sri Hidayati S., Vita Sirvia P. \\
 & Suci Melia S.)}\) .. 341

32. Isolation and Sequencing of SUP45 Mutant Gene from Yeast *Saccharomyces cerevisiae* for Structure-Function Study of eRF1 Protein (P28)
 \(\text{(Subandi)}\) .. 347

33. Detection of *Salmonella* on Samples of Foods and Beverages by Polymerase Chain Reaction (P51)
 \(\text{(Arum Widyasmara, Maksum Radji & Amarila Malik)}\) 357

34. Potential Use of Microfiltration Membrane in Separation of Amino Acids as Savory Fraction from Extract of Vegetable Broth of Mung Beans (*Phaseolus radiatus* L.) through Brine Fermentation by *Aspergillus* sp-K3 and *Rhizopus-C_1* (P54)
 \(\text{(Aspiyanto, Agustine Susilowati, Yetty Mulyati Iskandar \\
 & Yati Maryati)}\) ... 365

35. Potency of Amino Acids as Savory Fraction from Vegetable Broth of Mung Beans (*Phaseolus radiatus* L.) through Brine Fermentation by *Rhizopus-C_1* (P55)
 \(\text{(Agustine Susilowati, Aspiyanto, Yetty Mulyati Iskandar \\
 & Yati Maryati)}\) ... 379

E. Agricultural Biotechnology

36. Isolation of a Drought Inducible Promoter (*OsLEA3*) and a Gene (*OsNAC6*) from a Drought Responsive Indonesian Rice Cultivar (P64)
 \(\text{(Satya Nugroho, Dini Nurdiani, Kinasih Prayuni & Maria Swastika)}\) 395

37. Overexpression Xyloglucanase Gene in Sengon (*Paraserianthes falcataria*) for Growth Acceleration (P71)
 \(\text{(N. Sri Hartati, Leny Rahayuningsih, Rumi Kaida, \\
 Enny Sudarmonowati & Takahisa Hayashi)}\) ... 405
38. Regulation of Homoglutathione Biosynthesis Gene Expression in Root Nodule of Drought Legume Species (P65)
(Sunarpi) ... 413

39. Identification of Hd3a Interacting Proteins by Using Yeast Two-Hybrid Screening (O17)
(Yekti Asih Purwestri, Hiroyuki Tsuji & Ko Shimamoto) 425

40. A New Method for Identifying the Progeny of Intergeneric Orchid Breeding Based on its Chloroplast TRNL-F Sequences (O5)
(Endang Semiarti, Yasunori Machida & Chiyoko Machida) 435

41. Application of DNA-Based Techniques to Develop Markers-Assisted Breeding of Leucadendron (O6)
(Made Pharmawati, Guijun Yan & Patrick Finnegan) 443

42. Application of Molecular Markers in Cauliflower Production
(Ida Ayu Astarini, J.A. Plummer, G. Yan & R.A. Lancaster) 457

43. Phylogenetic Relationship of Alocasia suhirmaniana in the Group of Longiloba Using RAPD Analysis (P59)
(Dyah Retno Wulandari, Utut Widyastuti & Tri Muji Ermayanti) 471

44. DNA Methylation Detection of Oil Palm (Elaeis guineensis Jacq) Somatic Embryo by Randomly Amplified DNA Fingerprinting with Methylation–Sensitive (RAF-SM) and RP-HPLC (P66)
(Nesti F. Sianipar, Gustaaf A. Wattimena, Maggy Thenawijaya Soehartono, Hajrial Aswidinnoor, Nurita Toruan-Mathius & Gale Ginting) 479

45. Transformation Strategy for Indica Rice of Batutegi and Kasalath Cultivars in Attempt to Discover Drought-Tolerant Related Genes (O18)
(Enung Sri Mulyaningsih, Hajrial Aswidinnoor, Didy Sopandie, P.B.F. Ouwerkerk, Satya Nugroho & Inez Hortense Slamet Loedin) 489

46. Study of In Vitro Sugarcane Basal Shoot Potential to Agrobacterium-Mediated DNA Transformation Explants (O20)
(Muhammad Hazmi & Bambang Sugiharto) .. 501

47. Clonal Propagation of Sago Palm (Metroxylon sagu Rottb.) through Tissue Culture (P67)
(Sumaryono, Imron Riyadi & Pauline Destinugrainy Kasi) 513

Bogor, 5-7 August 2008
48. Propagation of Selected *Jatropha curcas*: Shoot Multiplication, Organogenesis and Somatic Embryogenesis (P68)
 (Enny Sudarmonowati, Nurdiya Ardiyanti & Nurhamidar Rahman) 521

49. Thrips Resistance in Pepper (O33)
 (Awang Maharjaya, Agus Purwito & Roeland Voorrips) 527

50. Interaction between an Isolate of Epiphytic Yeast *Rhodotorula glutinis* and Post-Harvest Fruit Pathogen, *Mucor piriformis* (P73)
 (Sri Widyastuti) .. 535

51. The Influence of Inoculation of Arbuscular Mycorrhizae Combined with Casting on Yield of Potato (*Solanum tuberosum* L.) (O31)
 (Nurhalisyah) .. 547

52. Application of Bioactivators to Produce Organic Fertilizer from Seaweed Processing Waste (P36)
 (Muradinah, Rahmi & S. Hermanto) .. 553

 (Tania Surya Utami, Heri Hermansyah, Misri Gozan, Josia Simanjuntak, Slamet & Muhamad Nasikin) 561

F. Feed and Animal Biotechnology

54. Detection of Quantitative Trait Loci (QTL) Affecting Carcass Traits in Backcross Family of Indonesian Thin Tail Sheep (O33)
 (Endang Tri Margawati, Indriawati, Subandrio, Karen Fullard & Herman Raadsma) .. 569

55. The Quality of the Spotted Buffalo's Epididymal Sperm in the Addition of Different Kinds of Sugars into Basic Extenders (P40)
 (Yulnawati, Hera Maheshwari, Herdis & Muhammad Rizal) 577

56. Y Chromosomal Microsatellites Polymorphism in Madura Cattle (*Bos javanicus*) (P41)
 (Aris Winaya, Herwintono & Mohamad Amin) 583
57. The Improvement and Optimization of Follicle In Vitro Growth (IVG) Culture System of Local Cattle as a New Potential Resources of Oocyte (P42)
(Gatot Ciptadi, Muhammad Sasmito Djati & Aulanni’am) ... 591

58. Improving the Quality of Tapioca by-Products (Onggok) as Poultry Feed through Fermentation by Bacillus amyloliquefaciens (P44)
(Wizna, Hafil Abbas, Yose Rizal, Abdi Dharma & I Putu Kompiang) 595

59. Improving the Quality of Tapioca by Product through Fermentation by Neurospora crassa to Produce β-Carotene Rich Feed (P45)
(Ñuraini, Sabrina & Suslina A. Latif) .. 605

60. Enzymatic Optimization of Lignoliticc Bacteria on Lignin and Organochlorin Degradation and its Implementation on Rice Straw Fermentation (P47)
(Indah Prihartini, Soebarinoto, S. Chuzaemi & Muhammad Winugroho) .. 613

61. Effect of Sulphur Supplementation on In Vitro Fermentability, Synthesized Microbial Protein and Degradability of Ammoniated Rice Straw (P46)
(Mardiati Zain & Anita Sardiana Tjakradijaja) ... 623

62. Microscopic Observation of Napier Grass (Pennisetum purpureum) Structure: Preliminary Study on the Effects of Rumen Microbial Degradation (P48)
(Wulansih Dwi Astuti, Roni Ridwan & Yantyati Widyastuti) ... 631

63. Introduction of Fibrolytic Bacteria of Sheep Rumen to Improve In Vitro Cellulolytic Probiotics Capability (P50)
(Listiari Hendraningsih & Lili Zalizar) .. 639

G. Industrial Biotechnology

64. Biosurfactants Production from Azotobacter sp. and its Application in Biodegradation of Petroleum Hydrocarbon (O16)
(Qomarudin Helmy, Pujawati Suryatmana, Edwan Kardenza, Naoyuki Funamizu & Wisnuprapto) .. 649
65. Jatropha Seed Cake as Unconventional Substrate for Biosurfactant Production by *Azotobacter vinelandii* (P81)
(Qomarudin Helmy, Cynthia E.L. Latunussa, Pujawati Suryatmana, Edwan Kardena & Wisnuprapto) .. 657

66. The Construction of β-Xylosidase Gene in the pHIS1525/Bacillus megaterium System (O40)
(Sri Sumarsih, Ni Nyoman Tri Puspaningsih & Ami Soewandi J.S.) 663

67. Immobilized Xylanase from *Streptomyces* sp. 451-3 in Corncob Xylan Hydrolysis (P74)
(Anja Meryandini, Titi Candra Sunarti, Ferry Mutia, Niken Financia Gusmawati & Yulin Lestari) ... 671

68. Fermentation of Sweet Corncob and Sugarcane Bagasse in Xylitol Production (P80)
(Mery Tambaria Damanik Ambarita, Adolf Parhusip & Hanna Christiana) ... 683

(Riksfardini Annisa Ermawar, Triyani Fajriutami & Euis Hermiati) 693

List of Participants ... 703
List of the 4th Indonesian Biotechnology Conference Committee 739
List of Indonesian Biotechnology Consortium (KBI) Members 743
Board of Indonesian Biotechnology Consortium (KBI) 2006-2010 745
The 4th Indonesian Biotechnology Conference Schedule 747
List of Posters ... 757
Index of Authors ... 763

The 4th Indonesian Biotechnology Conference xix
A New Method for Identifying the Progeny of Intergeneric Orchid Breeding Based on its Chloroplast $TRNL-F$ Sequences

Endang Semiarti1, Yasunori Machida2 and Chiyoko Machida3

1Faculty of Biology, Universitas Gadjah Mada, Jalan Teknika Selatan, Sekip Utara, Yogyakarta 55281, Indonesia
E-mail: endsemi@ugm.ac.id
2Graduate School of Science, Nagoya University, Nagoya, Japan
3College of Bioscience and Biotechnology, Chubu University, Aichi, Japan
(Correspondence to: Endang Semiarti)

ABSTRACT

To determine the genotype of progeny in orchid breeding, a new method for selection of the progeny of intergeneric orchid breeding was carried out based on the chloroplast trn Leusine ($trnL$) gene and trn Phenylalanine ($trnF$) spacer region. Around 1,100-1,200 base pairs (bp) sequences of the specific region of the orchid chloroplast showed different structure in each genus of orchid as detected by Polymerase Chain Reaction using a pair of specific oligonucleotide primers. This technique is simple and useful for orchid breeders to easily and rapidly identify the success of the breeding program.

Keywords: $trnL-F$ region, molecular marker, intergeneric, orchid breeding

INTRODUCTION

Indonesia has a collection of more than 5,000 orchid species. That makes us as one of the most important target area for orchid exploitation (Irawati, 2002). At present, the Indonesian orchid flora is threatened of being decimated and numerous valuable components may even become extinct in the near future because of forest destruction and over-collecting for trade (Vermeulen, 2002). Production and commercialization of new lines of orchid hybrids has exploited the wild orchid flora. This would really be worth attempting, because it makes use of a resource unique to the country. In nature, orchid species rarely forms natural hybrids in zones of overlap. The integrity of the species is maintained by differences in flowering times, floral morphology, visual and olfactory cues, as well as by genetic incompatibility or inability of the hybrid to establish and reproduce. When one or more of the barriers or isolating mechanisms are removed, for example when orchids are pollinated by hand in the greenhouse, two different species will often produce viable hybrids quite readily. Artificial hybrids are
common between species in the same genus and between species of different genera in the same subtribe, but are more rarely between species in different subtribes (but within the same tribe). In fact, the genes from as many as six different genera are present in some hybrids, leading to the perception of orchids as the most promiscuous plants (Anonim, 2003). The earliest hybrids were intrageneric, that is, they were crosses between species in the same genus for example Calanthe Dominy (C. furcata X C. masuca) a cross made by John Dominy in 1856. Orchid hybridization is very important to increase its genetic variation. A new hybrid with genes from multiple genera has been created such as Pottinara (Brassavola X Laelia X Cattleya X Sophronitis). The Royal Horticultural Society registers all new orchid hybrids and published them regularly in major orchid periodicals and every five years in Sanders Complete list of Orchid Hybrids.

In this paper, trnL-F sequences of chloroplast DNA were used to produce a molecular marker for genotyping of hybrids between Phalaenopsis amabilis (L.) Blume and Dendrobium fimbriatum Hook.

MATERIALS AND METHODS

The plant materials and growth condition

P. amabilis (L.) Blume (Java form), Vanda tricolor Lindley and D. fimbriatum Hook were used as plant materials in this study (Fig. 1). The flowers of P. amabilis and D. fimbriatum were cross-pollinated and the plants were maintained in a glasshouse to produce fruits and fertile seeds. Seeds were sown on modified New Phalaenopsis (NP) medium (Islam et al., 1998) with 20 g/l sucrose as carbon source, 250 mg/l casein hydrolysate and 9 g/l agar instead of Gelrite. The medium contained 150 ml/l coconut water. The cultures were maintained under continuous white light at 25°C.

Fig. 1. Orchid plant used as materials. A. V. tricolor Lindley, B. P. amabilis (L.) Blume, C. D. fimbriatum Hook. Bars, 5 cm in A, 2 cm in B, and 1 cm in C

DNA isolation and purification

The leaves of seedlings were used for DNA extraction. DNA were isolated according to the instructions from the genomic DNA isolation kit from the manufacturer (Qiagen GmbH, Germany), without RNAse treatment.
Polymerase chain reaction and sequence analysis

Genomic DNA of orchids were used as templates for the amplification of trnL-F intergenic space of chloroplast DNA using primer C (5'-CGAAATCGGTAGACGCTACG) and primer F (5'-ATTGAACTGCTGACACGAG). The PCR program was 1 min at 94°C for initial denaturation, 35 cycles for 1 min at 94°C, for 1 min at 50°C and for 1 min 30 sec at 72°C. PCR products were purified using PCR purification column (Jet quick, GENOMED GmbH). The purified PCR products were sequenced using primer C or primer F, with Big Dye terminator (PE, Biosystem) with the following conditions: for 1 min at 96°C (initial denaturation), 25 cycles for 10 sec at 96°C, for 5 sec at 50°C and for 4 min at 60°C using 12.5 μl reactions following the dideoxynucleotide chain-termination method by using an ABI PRISM 377 DNA sequencer according to the manufacturer protocol (Perkin-Elmer, Foster City, CA). Alignment of the deduced amino acid sequences was performed with the GENETYX-MAC Version 13.0.4 and Sequencher version 4.8 (Gene codes corp., Ann Arbor, Michigan, USA).

Genotyping of orchid hybrids

The amplified DNA from each orchid, parental and sibling plants were independently digested with three kinds of restriction enzyme: EcoRI, BamHI and DraI and subjected to fingerprint analysis. The digested DNA were size-fractionated by electrophoresis in either vertical 6% polyacrylamide gel or 0.7% horizontal agarose gels, stained with ethidium bromide and visualized under UV-transilluminator. The genotype of each orchid was determined by the restriction fragment length polymorphism (RFLP) analysis of digested PCR product comparing the RFLP pattern of parental and the hybrids.

RESULTS AND DISCUSSION

Structure of the intergenic spacer region trnL-F in V. tricolor and P. amabilis

To analyze the structure of the intergenic spacer region trnL-F in V. tricolor and P. amabilis, the sequences of V. luzonica originated from the Phillipine which has been submitted in the Gene Bank were used as a reference by Goh et al. (2003) AY273699. We also compared the sequence of V. tricolor and P. amabilis to the sequence of Phragmipedium equadorensen published by Whitten et al. (2005) in the Gene Bank with the accession No. AY918864. Using a pair of universal primers C and F from Taberlet et al. (1991) we could amplify a fragment cp DNA of 1, 222 bp in length from V. tricolor and 1,196 bp in length from P. amabilis, that close to the length of that specific region of V. luzonica (1,145 bp) and P. ecuadorensen (1,001 bp). The sequence alignment of V. tricolor, P.
amabilis, *V. luzonica* and *P. ecuadorensis* showed that *V. tricolor* share 88% identity to *V. luzonica* and 86% identity to *P. ecuadorensis*. However, *P. amabilis* shared 86% identity to *V. luzonica* and 84% identity to *P. ecuadorensis*. Restriction map analysis showed that three kinds of endonuclease restriction enzymes, namely *EcoRI*, *BamHI*, and *DraI* can be used to provide the RFLP marker between these orchid genera (Fig. 4).

Selection of orchid hybrids:

Dendrobium fimbriatum X *Phalaenopsis amabilis*

Based on morphological analyses of parental orchids, *P. amabilis* and *D. fimbriatum*, and its hybrids, Suseno et al. (2005) found the different patterns of shoot developments and leaf shapes among the hybrid plants. They were grouped into four categories, namely Type 1, Type 2, Type 3 and Type 4 consisted of 46, 43, 2 and 2%, respectively and 7% outside of those 4 types that showed callus like structure, and 6% showed albino appearance (Fig. 2). Type 1 was characterized by small shoot with lanceolated leaves; Type 2 was characterized by large shoot with lanceolated leaves; Type 3 showed large shoots with ellipsoid leaves and Type 4 small shoots with ellipsoid leaves.

![Morphology of intergeneric hybrid orchid plants](image)

Fig. 2. Morphology of intergeneric hybrid orchid plants (*D. fimbriatum* X *Phalaenopsis amabilis*). A. *P. amabilis*, B. *D. fimbriatum*, C. Intergeneric D X P type 1-4, D. Callus like, E. Albino phenotype, F. Schematic figure of C. (Suseno et al., 2005)

We also did AFLP (Amplified Fragment Length of Polymorphism) analysis of the hybrids using the *DOH1* gene locus according to the *DOH1* cDNA sequences published by Yu et al. (2001). The results showed that all hybrid plants showed recombinant pattern in *DOH1* locus. Unfortunately, we found difficulties amplifying the *DOH1* locus because of the length of the large sizes of the fragments about 2,700 bp in *Phalaenopsis* and 2,600 bp in *Dendrobium*. A part of intergenic spacer *trnL*-F region, that is in a ranges of 1,100–1,200 bp in length was easier to be amplified, because it is a very specific region in the chloroplast DNA (Fig. 3) with no redundant sequences making it is efficient to be used as a molecular marker. We confirmed that the hybrids had both fragments from the parental plants (Fig. 4).
Fig. 3. Amplified DNA on the part of the intergenic trnL-F region. V, V. tricolor; P, P. amabilis; D, D. fimbriatum. I-1 to I-8 are intergeneric hybrids between D. fimbriatum and P. amabilis. The length of the PCR product is between 1,100-1,200 bp

Fig. 4. RFLP analysis of PCR products of intergeneric plants on the trnL-F region of chloroplast DNA. A. Dral digested PCR products, B. EcoRI digested PCR products: M. Lambda DNA/Phh; V. V. tricolor; P. P. amabilis; D. D. fimbriatum; I. intergeneric plants between D. fimbriatum and P. amabilis

The orchid genera used in this study, i.e. Vanda, Phalaenopsis and Dendrobium, showed RFLP patterns among them. The RFLP patterns among the 3 genera was very clear after the PCR product of trnL-F spacer fragment was digested with Dral. In vertical 6% acrylamide gel, V. tricolor showed 3 bands (770, 293 and 82 bp), P. amabilis was digested into two fragments (400 and 770 bp), while D. fimbriatum was cut into 2 fragments (770 and 300 bp). Intergeneric plants showed hybrid molecules belonging to both D. fimbriatum and P. amabilis was indicated by the presence of 3 bands (770, 400 and 300 bp). The results were confirmed by the RFLP pattern of trnL-F region digested with EcoRI restriction enzyme. P. amabilis showed 3 bands (639, 278 and 258 bp), while D. fimbriatum showed 3 fragments with a slightly different sizes (639, 278 and 235 bp). A 23 bp different of trnL-F spacer region between D. fimbriatum and P. amabilis can be used to distinguish these 2 orchid species, particularly if we separated the digested PCR product by vertical 6% acrylamide gel electrophoresis. These data suggested that for identifying the hybrid of
orchid, the trnL-F intergenic spacer region could be used as a good molecular marker and as an innovative method to confirm the phenotypic characters. The specification of the trnL-F structure was also useful for molecular phylogenetic analysis of Incarvillea (Bignoniaceae) (Chen et al., 2005) and comparing the genetic, geographic structure and history of specimen distribution of V. tricolor in Asia (Gardiner, 2005).

ACKNOWLEDGEMENTS

We would like to thank Dr. Shoko Kojima, Dr. Hidekazu Iwakawa, Dr. Mayumi Iwasaki (Laboratory of Plant Biosciences, College of Bioscience and Biotechnology, Chubu University, Japan) for valuable discussion. This work was supported partly by Grants-in-Aid for Scientific Research on Priority Areas (No. 14036216 to Y.M., No. 16027250 to C.M.) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan, and Core Research for Evolution Science and Technology (CREST) of the Japan Science and Technology Corporation, and by an Academic Frontier Project for Private Universities matching fund subsidy from MEXT, 2005-2009.

REFERENCES

Goh, M.W.K., S.H., Lim, H.T.W. Tan & P.P. Kumar. 2003. Molecular Phylogenetics of the Moth Orchids, Phalaenopsis (Epidendroideae: Orchidaceae), Based on Sequence Data from Internal Transcribed Spacers (ITS) of Nuclear Ribosomal DNA and Plastid trnL-trnF. Department of Biological Sciences, the National University of Singapore. Singapore. Unpublished.

SURAT KETERANGAN
No. : 017/KBI/III/2016

Yang bertanda tangan di bawah ini, Ketua Konsorsium Bioteknologi Indonesia (KBI), dengan ini menerangkan bahwa:

Endang Semarti
Fakultas Biologi
Universitas Gajah Mada

Adalah benar telah mengikuti Seminar Biologi Internasional, 4th. Indonesian Biologi Conference, dengan tema: Biotechnology for better food, Health and environment
Yang diselenggarakan di IPB International Convention Center, Bogor
Pada tanggal 5 – 7 Agustus 2008
oleh KONSORSIUM BIOTEKNOLOGI INDONESIA (KBI)

Demikian surat keterangan ini dibuat untuk dapat dipergunakan sebagaimana mestinya.

Depok, 15 Maret 2016
Konsorsium Bioteknologi Indonesia (KBI)
Ketua

Prof. Dr.-Ing. Misri Gozan, M.Tech.