The 6th ISTAP
International Seminar
on Tropical Animal Production

“Integrated Approach in Developing Sustainable Tropical Animal Production”

PROCEEDINGS

PART I

October 20-22, 2015
Yogyakarta Indonesia

ISBN: 978-979-1215-26-8

Published by:
Faculty of Animal Science, Universitas Gadjah Mada Yogyakarta, Indonesia, 2015
LIST OF CONTENTS

PREFACE

-iii

REPORT FROM ORGANIZING COMMITTEE

-iv

WELCOME ADDRESS

-v

OPENING REMARKS

-vi

LIST OF CONTENTS

-vii

PLENARY SESSION

1. Strategies to Increase the Domestic Production of Raw Milk in Indonesia and Other South East Asian Countries
 John Moran and Phillip Morey
 1-11

2. Nutritional Challenges of Lactating Dairy Cattle in a Tropical Climate
 J. K. Bernard
 12-17

3. Feed, Land, and Landscape for Sustainable Animal Production
 Shaukat A. Abdulrazak A and Isaac M. Osugab
 18-18

4. Food Safety Regulation and Halal Food Issues in Indonesia
 Roy Sparringa
 19-19

5. Extension System for Livestock Development in Developing Countries: Knowledge Management Application
 Budi Guntoro
 20-27

6. Structural Development of Livestock Farms in a Global Perspective
 Henning Otte Hansen
 28-50

7. Whole Farm Problems with Heat Stress – It’s Not Just for Lactating Dairy Cows
 Allen Young
 51-57

LEAD PAPER

1. Antimicrobial Peptides Expression for Defense System in Chicken Gastrointestinal and Reproductive Organs
 Yukinori Yoshimura, Bambang Ariyadi, and Naoki Isobe
 58-60

2. Improving Technology Adoption and Sustainability of Programs to Increase Bali Cattle Productivity in West Nusa Tenggara Province, Indonesia
 Yusuf A. Sutaryono, T. Panjaitan, and Dahlanuddin
 61-66

3. The Role of Family Poultry Systems in Tropical Countries
 Yusuf L. Henuk, Monchai Duangjinda, and Chris A. Bailey
 67-71
SUPPORTING PAPERS

Part I

Animal Feed and Nutrition

1. NM-03-P The Marl and Kaolin in Broiler Diet: Effects on the Bone Weight and the Cutting Yield
 D. Ouachem, A. Meredef, and N. Kaboul .. 72-75

2. NM-04-P The Effect of Liquid Nanocapsule Level on Broiler Fat Quality
 Andri Kusmayadi, Zuprizal, Supadmo, Nanung Danar Dono, Tri Yuwanta, Ari Kusuma Wati, Ronny Martien, Sundari 76-79

3. NM-05-O Production and Egg Quality of Quail Layer Given Diets Containing Different Levels of Crab (Portunus pelagicus) by-Product Meal
 K.G. Wiryawan, Syamsuhaidi, D.K. Purnamasari, and T.S. Binetra .. 80-84

4. NM-08-P A Preliminary Study on the Use of Enzyme and Organic Acids in Rice Bran-containing Diet at Two Levels of Dietary Protein for Rabbit
 Tuti Haryati and Yono C. Raharjo .. 85-89

5. NM-09-O Efficacy of Toxin Binder in Reducing Induced Aflatoxin B and Ochratoxin A in Broiler Feed
 Anjum Khalique, Muhammad Umer Zahid, Jibran Hussain, Zahid Rasool .. 90-93

6. NM-10-O Evaluation of Local Feed in Broiler Diets in Small Scale Farm in Palu Central Sulawesi

7. NM-11-O Digestibility and Nutritional Value of Gedi (Abelmoschus manihot (L.) Medik) Leaves Meal in the Diet of Broilers
 Jet Saartje Mandey, Hendrawan Soetanto, Osfar Sjofjan, Bernat Tulung .. 100-104

8. NM-12-O Utilization of Skipjack Tuna (Katsuwonus pelamis L.) Gill in Diet as a Source of Protein on Carcass Quality of Broiler Chickens
 Jein Rinny Leke, Jet S. Mandey, Meity Sompie, Fenny R. Wolayan .. 105-109

9. NM-13-O The Dynamics of Indigenous Probiotics Lactic Acid Bacteria on Growth Performance, Total Adherence Bacteria, and Short-Chain Fatty Acids Production in the Ileum of Male Quail
 Sri Harimurti, Sri Sudaryati and Bambang Ariyadi .. 110-110
10. NM-14-O Selection of Human-origin Lactobacillus Strains as Probiotics with Capability in Synthesizing Conjugated Linoleic Acid and Alleviating Hyperglycemia in Rats (Rattus norvegicus) in Vivo
 Widodo, Pradipta Ayu Harsita, Samuel Aditya, Nosa Septiana Anindita, Tutik Dwi Wahyuningsih and
 Arief Nurrochmad ...111-116

 Lilik Retna Kartikasari, Adi Magna Patriadi Nuhriawangsa,
 Winny Swastike and Bayu Setya Hertanto117-117

12. NM-16-O Performance of Japanese Quails Fed Different Protein Levels and Supplemented with Betaine
 Adi Ratriyanto, Rysca Indreswari, Adi Magna Patriadi
 Nuhriawangsa, Apriliana Endah Haryanti118-122

13. NM-17-O The Influence of Vitamin D3 Levels on Diets with Phytase on Production Performance of Layer Quail (Coturnix coturnix japonica)
 Adi Magna Patriadi Nuhriawangsa, Adi Ratriyanto, Winny Swastike,
 Rysca Indreswari, Ahmad Pramono and Try Haryanto123-126

14. NM-20-O Phytobiotics Habbatus Sauda and Garlic Meal: Are Still Efficacious During the Spread of Marek’s Disease Outbreak?
 N.D. Dono, E. Indarto, Kustantinah, Zuprizal127-131

15. NM-22-O The Effect of Dietary Calcium and Phosphorus Level on Serum Mineral Contents of the Bantul Local Duck within a Day
 H. Sasongko, T. Yuwanta, Zuprizal, Supadmo,
 and I. Widiyono ...132-132

16. NR-01-P Supplementation Local Feed Urea Gula Air Multinutrient Block and Different Levels of Sulphur for Increase Lactation Productivity Doe Also Decrease Kid Mortality Bligon Goat Grazed at Timor Savannah
 Arnold E. Manu, Yusuf L. Henuk, H.L.L.Belli, M.M. Kleden133-137

17. NR-02-P Methane Production and Rumen Fermentation Characteristics of Buffalo Ration Containing Sorghum Silage with Rumen Simulation Technique (RUSITEC) Methods
 Teguh Wahyono, Dewi Apri Astuti, Komang G. Wiryawan, Irawan Sugoro, Suharyono ...138-142

18. NR-04-O Body Weight Gain Response of Sumba Ongole Cattle to the Improvement of Feed Quality in East Sumba District, East Nusa Tenggara, Indonesia
 Debora Kana Hau and Jacob Nulik ..143-146
19. NR-05-O Daily Body Weight Gain of Bali Cattle Fed with Leucaena Leucocephala as the Main Ration in West Timor, East Nusa Tenggara, Indonesia
 Jacob Nulik and Debora Kana Hau...147-150

20. NR-06-O Tannin Anthelmintic Doses, Metabolizable Energy and Undegraded Protein Contents of Rubber Leaves (Hevea brasiliensis) as Herbal Nutrition for Goats
 Sri Wigati, Maksudi Maksudi, Abdul Latief and Eko Wiyanto .151-155

21. NR-07-P Consumption and Digestibility of Nutrients in Bali Cattle at the Last Period of Pregnancy Kept under Semi Intensive System Supplemented with Nutritive Rich Feed Contained Lemuru Oil and Zinc
 Erna Hartati, E.D. Sulistijo, A. Saleh...156-160

22. NR-08-P Preliminary Screening for Anthelmintic Potential of Sesbania grandiflora Leaves for Parasitic Infected Goats in Short-Term Trial
 Mohd Azrul Lokman, Kanokporn Phetdee, Sathaporn Jittapalapong and Somkiert Prasanpanich...161-165

23. NR-09-O The Effect of Urea Treated Straws and Urea-Molasses Feed Blocks (UMB) on Reproductive Performance of Libyan Barbary Sheep

25. NR-11-O Chemical Composition, Antioxidant Compounds and Antioxidant Capacity of Ensiled Coffee Pulp

26. NR-12-O Influence of Starch Type as Substrate Material in Dry Lactic Acid Bacteria Inoculant Preparation on Fermentation Quality and Nutrient Digestibility of King Grass Silage
 B. Santoso, B. Tj. Hariadi and Jeni...182-186

27. NR-13-O Responses of Growing-Female Crossbred Ettawa Goats Fed Concentrates Containing by product of Traditional Fried Snack Industry with Different Levels of Urea
 A R. S. Asih, K G. Wiryawan, I. N. Sadia, and Kertanegara........187-190
28. NR-14-O Restriction Feed and Refeeding Evaluation for Consumption, Feed Cost, Income Over Feed Cost, Percentage of Carcass and Meat Quality Kacang Goat
 Bambang Suwignyo, Miftahush Shirothul Haq, Setiyono, and Edi Suryanto...191-197

29. NR-15-O Characteristics of polyunsaturated fatty acids and nutrient digestibility feed cattle of the fermented rumen fluid by one and two stage in vitro

30. NR-16-P Performance and Economic Efficiency of young Anglo-Nubian Goat Fed Different Protein and Energy
 I-G.M.Budiarsana, Supriyati and L. Praharani..203-207

31. NR-17-P Effect of Choline Chloride Supplementations on Productive Performance of Ettawa Crossbred Goats
 Supriyati Kompiang, I Gusti Made Budiarsana, Rantan Krisnan, Lisa Praharani...208-212

32. NR-18-O Body Weight Gain of Donggala Bull Given Supplement Feed on Basis of Cocoa Pod Husks Fermentation
 F.F. Munier, Mardiana Dewi, and Soeharsono...213-217

33. NR-19-O Influence of Cellulolytic Bacteria from Rumen Fluid on In Vitro Gas Production of Robusta Coffee Pulp (*Coffea canephora* Sp.) Fermented
 Chusnul Hanim, Lies Mira Yusiati, and Fahriza Anjaya Jazim.................218-222

34. NR-20-P Growth and Productivity of *Brachiaria brizantha* cv MG 5 under the effect of different dose of NPK fertilization
 Nafiatul Umami, Meita Puspa Dewi, Bambang Suhartanto, Cuk Tri Noviandi, Nilo Suseno, Genki Ishigaki, Ryo Akashi..........................223-227

35. NR-21-O *Indigofera* Sp as a Source of Protein in Forages for Kacang Goat in Lactation and Weaning Period
 A. Nurhayu and Andi Baso Lompengeng Ishak......................................228-232

36. NR-22-O Supplementing Energy and Protein at Different Degradability to Basal Diet on Total Protozoa and Microbial Biomass Protein Content of Ongole Grades Cattle
 Dicky Pamungkas, R. Utomo, dan M. Winugroho.................................233-237

37. NR-24-O Nutritive Evaluation of Pineapple Peel Fermented by Cellulolytic Microbe and Lactic AcidBacteria by In Vitro Gas Production Technique
 Lies Mira Yusiati, Chusnul Hanim and Caecilia Siska Setyawati..................238-242
The Supplementation of ZnSO₄ and Zn-Cu Isoleusinate in the Local Feed Based at Last Gestation Period on Dry Matter Consumption and Digestibility and Calf Birth Weight of Bali Cattle
FMS Telupere, E Hartati, and A. Saleh...243-247

Local Micro Organisms (LOM) as an Activator to Enhance the Quality of Various Plant Waste as Feed
Andi Ella, A. Nurhayu and A. B. Lompengeng Ishak.................................248-251

Organic Acid and Inhibition of Complete Silage Ration on the Growth of Salmonella enteritidis
Allaily, Nahrowi, M. Ridla, M. Aman Yaman..252-256

The utilization of some feed supplement by using or without molasses on local male sheep on fermentation results in rumen liquid, daily live weight gain, production, C/N ratio and water content of feces
Suharyono, Teguh Wahyono, C. Ellen, K and Asih Kurniawati........................257-260

Evaluation of Albizia chinensis as Tannins Source for in Vitro Methane Production Inhibitor Agents Sheep Rumen Liquor
Anas, M. A., Yusiati, L. M., Kurniawati, A., Hanim, C..........................261-265

Growth and Productivity of Sorghum Bicolor (L.) Moench in Merapi Eruption Soil with Organic Fertilizer Addition
Suwignyo, B, B. Suhartanto, G. Pawening, B. W. Pratomo..................266-270

Quality and Storability of Pelleted Cassava (Manihot utilisima) Leaves var. Bitter
Ristianto Utomo, Subur Priyono Sasmito Budhi, Cuk Tri Noviandi,
Ali Agus, and Fidrais Hanafi...271-274

Biomass Production of Pueraria javanica Using Rhizobium Inoculant and Urine Bali Cattle in East Borneo
Ida Ketut Mudhita, Nafiatul Umami, Subur Priyono Sasmito Budhi
and Endang Baliarti...275-280

The Effect of Using Different Sources of Carbohydrates to Feed Efficiency on Indigenous Thin Tailed Male Lamb
Muktiani, A. A. Purnomoadi, E. Prayitno..281-285

Substitution of Concentrate by Protein Source Forage for Growing Heifer of Friesian Holstein (FH)
Y. Widiawati and M. Winugroho...286-290

The Use of Tricoderma sp. as a Starter of Fermentation Dry Teak Leaves (Tectona grandis) as Animal Feed
Yunianta and Hartatik...291-295
49. NR-39-P Nutritive Values of Rice Straw Fermentation Used Carbon Sources on Different Level With Various of Inoculant Levels Aspergillus niger and Lactobacillus plantarum
R. Agus Tri Widodo Saputro, Nono Ngadiyono, Lies Mira Yusiai, I Gede Suparta Budisatria.................................296-300

50. NR-40-O The Fat Protective Effect of Fish Oil, Sunflower Seed Oil and Corn Oil on Fluid Rumen Fermentation Parameters
Agustinah Setyaningrum, Soeparno, Lies Mira Yusiai and Kustantinah...301-305

51. NR-41-O The Effect of Supplementation of Gliricidia or Rice Bran on Liveweight Gain, Feed Intake and Digestibility of Kacang Goat Fed Mulato Grass
Marsetyo, Damry and Mustaring..306-310

52. NR-42-P In Sacco Feeding Value of Multi-Stage Ammoniated Palm Press Fiber
Armina Fariani, Arfan Abrar and Gatot Muslim..........................311-311

53. NR-43-O Alternative Rations to Maintain High Growth Rate of Bali Bulls Fattened with Leucaena Based Diet in Sumbawa, Eastern Indonesia
T. S. Panjaitan...312-315

54. NR-44-O The Use of Ramie By-Product (Boehmeria nivea) Materials as Complete Feed on the Growth and Hematology of Weaning Ettawa Cross Breed Goat
Emmy Susanti, Ali Agus, Y. Y. Suranindyah, and F. M. Suhartati...316-320

55. NR-45-O Study on Complete Feed Fermentation of Agricultural By-Product on Performance Etawah Goat
Yusdar Zakaria, Yurliasmi, Cut Intan Novita.................................321-325

56. NR-46-P Carcass Production and Component of Lamb Provided Metanogenic Inhibitor Feed
E.H.B. Sondakh, L.M. Yusiai, E. Suryanto, J.A.D. Kalele,
F.S. Ratulangi..326-330

Small Ruminant, Beef Cattle, Animal Draught and Companion Animal

57. PPO-01-O Correlation between the Slaughter Weight, Carcass Weight, with Body Measurements of Cattle in Kebumen, Central Java
Setiyono, Suharjono Triatmojo, Trisakti Haryadi, Dino Eka Putra
..331-334

58. PPO-02-O Production of Stingless Bees (Trigona sp.) Propolis in Various Bee Hives Design
Agus salim, Nafiatul Umami, Erwan..335-338
59. PPO-03-P Morphological Characteristics and Performance Boerawa Goat in Tanggamus District Lampung Province
Kusuma Adhianto and M. Dima Iqbal Hamdani..........................339-342

60. PPO-04-P Growth, Carcass Production and Meat Quality of Ongole Grade Cattle, Simmental Ongole Crossbred Cattle and Brahman Cross
N. Ngadiyono, Soeparno, Panjono, Setiyono and I. Akhmadi......................343-347

61. PPO-06-O Growth and Rumen Environment of Pre-weaning Bali Calves Offered Different Forage Based Calf Supplements
IGN Jelantik, ML Mullik, TT Nikolaus, T Dami Dato, IG Mahardika, NP Suwiti, C Leo Penu, J. Jeremias, A. Tabun.................................348-352

62. PPO-07-P Waste Utilization to Increase Productivity Growth Bali Cattle and Coffee Plants
I Nyoman Suyasa and IAP Parwati..353-358

63. PPO-08-O Effect of Different Lands on Heat Tolerance Coefficient and Body Weight Gain of Ram Fat Tailed Sheep
Rachmawati, A., H. Nugroho and E. Y. Wanto.................................359-359

64. PPO-09-O The Effects of Hair Colors Differences on the Performance of Etawah Grade Doe
I Gede Suparta Budisatria, Panjono, Dyah Maharani..........................360-364

65. PPO-10-P Age and Body Weight at Puberty and Service per Conception of Ongole Crossbred Heifer on Smallholder Farming System
Endang Baliarti, Bayu Andri Atmoko, Febri Aryanti, Nono Ngadiyono, I Gede Suparta Budisatria, Panjono, Tri Satya Mastuti Widi, M. Danang Eko Yulianto, Sigit Bintara.............................365-369

66. PPO-11-O Performance of Three Breeds of Sudanese Cattle
Hassan Ishag Hassan Haren and Hatim Idris.................................370-373

Poultry Science

67. PU-01-P Biosecurity Measurements in Poultry Farming System in Kuwait
A.A. Alsaffar..374-376

68. PU-03-O Effect of Mating and Polymorphism Insulin Like Growth Factor Binding Protein 2 Gene on Body Weight and Heritability of Kampung Chicken

69. PU-05-O The Residue Profile of Ciprofloxacin in Broiler Muscle and Liver
Agustina Dwi Wijayanti, Ambarwati, Wa Ode Sitti Falah Ramli..382-386
Selection for 10 Weeks Old Body-Weight on Sentul Chicken
Sofjan Iskandar and Tike Sartika .. 387-390

Analysis of Reproductive Potential and Hatchability of Naked Neck and Normal Hens
Jafendi H.P. Sidadolog, Tri Yuwanta, Wihandoyo, Sri Harimurti, Sri Sudaryati, Heru Sasongko and Bambang Ariyadi 391-396

Localization and Molecular Size of Mucin2 Glycoproteins Forming the Gut Mucosal Barrier in the Indonesian Indigenous Naked Neck and Normal Feathered Chickens
B. Ariyadi, J.H.P. Sidadolog, S. Harimurti, S. Sudaryati, and Wihandoyo ... 397-400

Milk Quality Of Anglo Nubian X Etawah Grade Goats And Saanen X Etawah Grade Goats At First Kidding Period
Lisa Praharani, Supryati, and Rantan Krisnan .. 401-405

Performance of Dairy Cattle with Supplementation of Rumensin, Garlic Husk (*Allium sativum*) and Organic Minerals in Ration
Caribu Hadi Prayitno, Suwarno, and Afifah Noor Hidayah 406-409

Trends of Dairy Population and Milk Production in Boyolali, Central Java, Indonesia
N. Hidayah, B. Guntoro, E. Sulastri, Y.Y. Suranindyah 410-414

Changes in Pathogen Number during Preservation of Milk Derived from Mastitic Dairy Cows
N. Isobe, K. Hisaeda, T. Koshiishi, M. Watanabe, H. Miyake, Y. Yoshimura ... 415-417

Diacylglycerol Acyltransferase1 (DGAT1) Gene Polymorphism in New Zealand Holstein Friesian Cattle under Dairy Breeding Station and Its Correlation with Milk Quality
SA. Asmarasari, C. Sumantri, IW Mathius, A. Anggraeni 418-422

Reaction of Cathelicidin-2 secreted from goats milk leukocytes to lipopolysaccharide
Moemi Nishikawa, Yukinori Yoshimura, and Naoki Isobe 423-425
PART II

Animal Breeding and Reproduction

79. PPE-01-P Identification of Pure Breed Bali Cattle by Using Molecular Approach
 Endang Tri Margawati, Indriawati, Slamet Diah Volkandari and
 Muhammad Ridwan..426-431

80. PPE-02-P Milk Transmitting Ability of Saanen Bucks under Intensive Management
 Anneke Anggraeni..432-436

81. PPE-03-O Genetic Markers of Twinning Births of Local Beef Cattle and Its
 Crossbreds in Indonesian
 A. Anggraeni, S. A. Asmarasari, H. Hasinah, C. Talib and
 B. Tiesnamurti...437-441

82. PPE-04-P Association of Prolactin Gene with Egg Production in PMp Ducks
 T. Susanti and I. P. Sari..442-446

83. PPE-05-P Microsatellite analysis of genetic diversity in Pekin, Alabio, and their
 crossbred duck populations
 L. Hardi Prasetyo, T. Susanti, T. Purwadaria..............................447-447

84. PPE-08-P Genotypic Profile of Ettawa Grade Goat with Different Head and Neck
 Color Based on MC1R Gene
 Dyah Maharani, I Gede Suparta Budisatria, Panjono, Tety Hartatik
 and Slamet Diah Volkandari...448-451

85. PPE-09-O Polymorphism of Promoter Prolactine Gene and Its Association with Egg
 Production of Selected Indonesian Kampung Chicken (KUB)
 Tike Sartika..452-452

86. PPE-10-O Qualitative And Quantitative Traits of Kokok Balenggek Chicken, the
 Rare Indigenous Chicken in West Sumatera
 Firda Arlina, Hafil Abbas, Sarbaini Anwar, Jamsari...............453-457

87. PPE-11-O Phenotype Measurements of Bali Cattle Combined with Interviews
 of Farmers from Multiple Locations in Indonesia as a Resource for
 Development of Breeding Programs
 Ann Eriksson, Endang Tri Margawati, Indriawati, Ronny Rachman
 Noor, Goran Andersson, Emma M Svensson.................................458-462

88. PPE-12-O Investigating the genetic status of Bali cattle in Indonesia using large scale
 genotyping
 Emma Svensson, Ann Eriksson, Ida Clemensson Lindell, Endang Tri
 Margawati, Rere Indriawati, Ronny Rachman Noor and
 GöranAndersson..463-463

xvi
89. PPE-14-P Genetic Variation and Phylogenetic Tree of Indonesian domestic Goat
Tety Hartatik, Kustantinah, Ristianto Utomo and Lies Mira Yusiati..464-469

90. PRP-01-O Identification of GH|Alu-I Gene Polymorphisms in Indonesian Simeulue Buffalo

91. PRP-02-O Reproduction Performance of Bali Cow at Three Areas of Bali Province
Andoyo Supriyantono..475-479

92. PRP-03-O Blood Lipid Profile of Hypercholesterolemia Rattus norvegicus L. Fed with Sausages Containing Omega 3 and Omega 6 Fatty Acids
Rio Olympias Sujarwanta, Edi Suryanto, Setiyono, Supadmo, Rusman, Jamhari, Yuny Erwanto...480-484

93. PRP-04-O The Effect of Kayu Akway (Drymis sp) Extract on The Number of Leukocyte of The Male Mice (Mus musculus L)
Purwaningsih, Angelina N. Tethool..485-488

94. PRP-05-O In Vitro Maturation Rate of Bligon Goat Oocytes Supplemented with Gonadotrophin
Diah Tri Widayati and Mulyoto Pangestu..489-493

95. PRP-06-P A Preliminary Study of the Use of Hormones on the Reproductive Performance of some Breeds of Rabbits
Bayu D. P. Soewandi and Yono C. Raharjo..494-497

96. PRP-08-P The use of vaginal smear method based on the morphology of the vaginal mucosa epithelial cells for the dairy cows cycle estrus detection
Riyanto, J., Sunarto, S. D. Widyawati and Lutojo..498-501

97. PRP-09-P Optimization of Bovine Sperm Sexing: Modification of Column Length and SeparationTime
Riasari Gail Sianturi and D.A. Kusumaningrum.......................................502-506

98. PRP-10-O The Detailed Motility and Velocity Characteristics of Rams Spermatozoa as Assessed by Computer-Aided Semen Analysis.
Ismaya...507-511

99. PRP-11-O The Effect of Trehalose Level In Tris-based Medium On Sperm Membrane Integrity of Boer Goat Semen After Cooling
Nurul Isnaini, Trinil Susilawati and Luqman Hakim....................................512-514
100. PRP-12-O Reproductive Efficiency Of Filial Ongole (Po), Limousin And Simmental Crossbred Cattle At Situbondo District
Kuswati, Doni sonta, Sri Wahyuningsih, Trinil Susilawati and Aulia Puspita Anugra Yekti...515-520

101. PRP-13-O Reproductive Performances of Ongole Crossbred Cattle Using Artificial Insemination Sexed Semen with Diferrent Methods
Trinil Susilawati, Lieyo Wahyudi, Nurul Isnaini and Aulia521-525

102. PRP-14-P Physiology and Reproduction Responses of Crossing Beef Cows
Aryogi and Y. Adinata..526-531

103. PRP-16-O Supplementation of Cysteine on Plasma Membrane Integrity of Buck Spermatozoa
Sri Wahjuningsih, Nuryadi and Achadiah Rachmawati........532-535

104. PRP-17-P Estrous Behavior in the Thoroughbred-Indonesian Local Crossbred Mares
Muhammad Danang Eko Yulianto, Bambang Purwantara,
Amrozi..536-540

105. PRP-19-O Preservation of Bull Cement Technology Applications without Freezing Proceed and Utilization of Epididymis as A Slaughterhouse as A Waste Product to Optimizational Bali Cattle Artificial Insemination in Remote Areas
Agung B, Mirandy S. Hermilinda P, T. Considus, Gustari S....541-545

106. PRP-21-P Sperm Quality of Gembrong Goat In Bali, East Java and North Sumatera After Extended With Citrate-egg Yolk, Tris-egg Yolk and Andromed®
Sigit Bintara, Dyah Maharani, I Gede Suparta, Jafendi H, Sumadi,
Simon Eleuser. Aron Batubara..546-549

107. PRP-22-P The Response of Gonadotropin Hormone at Different Dosage on Time of Oestrus, The Profile of Progesterone, Estrogen and Corpus Luteum of Ongole Crossed Cows
Lukman Affandhy, D.M. Dikman, Y. Widyaningrum.............550-553

108. PRP-23-O Reproductive performance of Ekor Tipis and Garut ewes raised in the same condition
Panjono, E. Baliarti, N. Ngadyono, I. G. S. Budisatria, T. S. M. Widi,
M. D. E. Yulianto and Sigit Bintara.................................554-556

109. PRP-24-P Effect of Doe Blood Serum Supplementation to Buck Semen on the Head to Head Agglutination Test
Hassan Ishag Haren, Mohamed Abd Elmoneim Salih, Abdel Aziz Makkawi and Hatim Idris.................................557-561
<table>
<thead>
<tr>
<th>No.</th>
<th>Title</th>
<th>Authors</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>The Sustainability of Community Development in Area Pig Farming with Serasah System Based on Spiritual and Cultural Aspect</td>
<td>Suci Paramitasari Syahlani, F. Trisakti Haryadi, and Yans Pangerungan</td>
<td>566-570</td>
</tr>
<tr>
<td>12</td>
<td>Exploration of Potential Regional Resources for Beef Cattle Farming Development in Java, Indonesia</td>
<td>Rini Widiati, Tri Anggraeni Kusumastuti, Mujtahidah Anggriani Ummul Muzayanah</td>
<td>571-576</td>
</tr>
<tr>
<td>14</td>
<td>Economic Analysis and the Impact of Technology IB Livestock Buffalo of Income Farmer</td>
<td>Rusdiana S. and L. Praharani</td>
<td>582-585</td>
</tr>
<tr>
<td>15</td>
<td>Economic Analysis of the Effects of Conservation Land to Provide Feed in Dry Land Farming on the Island East</td>
<td>Helena Dasilva and Sophia Ratnawaty</td>
<td>586-595</td>
</tr>
<tr>
<td>16</td>
<td>Analysis of Champion of Milk Cluster Industry in The Province of Central Java-Indonesia</td>
<td>Tridjoko W. Murti, Adiarto, Soedjatmogo, B. Purbaya and R. Kawuri</td>
<td>596-600</td>
</tr>
<tr>
<td>17</td>
<td>Small Scale Livestock Farmers’ Disincentives for Animal Disease Prevention and How Incentives Can Be Improved: A Case of Uganda</td>
<td>Juliet Biira</td>
<td>601-605</td>
</tr>
<tr>
<td>18</td>
<td>Production Cost Evaluation and Effect of Lactic Acid Bacteria \textit{(Lactobacillus Plantarum)} as Starter with Different Molasses Addition</td>
<td>Zaenal Bachruddin, Mujtahidah Anggriani and Afif Fakhruddin</td>
<td>606-609</td>
</tr>
<tr>
<td>19</td>
<td>Livestock Commodities Income Contribution of Farming in the Village of Catur, Kintamani, Bangli</td>
<td>Ida Ayu Putu Parvati and Nyoman Suyasa</td>
<td>610-614</td>
</tr>
</tbody>
</table>
120. SA-13-O Assessment of the Calorie-Protein Consumption Pattern among Rural and Low-Income Urban Households in Indonesia
Mujtahidah Anggriani Ummul Muzayyanah, Sudi Nurtini, Suci Paramitasari Syahlani...615-618

121. SA-14-O Constraints of Value Chain in Dairy Industry in Central Java
Budi Guntoro, Rochijan, Budi Prasetyo Widyobroto, Indratiningsih, Nafiatur Umami, Sudi Nurtini, and Ambar Pertiwiningrum...619-623

122. SK-02-O The Agricultural Technology Transfer Agencies Role on Transferring the Biogas Technology to Farmers: A Study Case of Dairy Farmer’s Network Analysis in Umbulharjo Village, Yogyakarta Province, Indonesia
R. Ahmad Romadhoni Surya Putra...624-628

123. SK-03-O Combined Effect of Message Framing and Endorser Credibility to Buying Interest of Yoghurt Product
Tian Jihadhan, Suci Paramitasari Syahlani, F. Trisakti H........629-633

124. SK-04-O The Alternative Livestock and Sustainability of Farmers in Mexico
Ricardo E. Caicedo Rivas, A. Moreno Oceguera, A. de M. Parra Gallegos and M. Paz Calderón Nieto...634-637

125. SK-05-P Farmers’ Perception of Etawah Grade Goat Productivity Based on the Hair Color Differences
I Gede Suparta Budisatria, Panjono, Dyah Maharani........638-642

126. SK-06-O Regional Development for Beef Cattle Farming based on Agricultural by Product in Serdang Bedagai District, North Sumatra Province, Indonesia
Tri Hesti Wahyuni, Sya‘ad Affuddin, Ma’ruf Tafsin and Rahmanta Ginting...643-650

127. SK-07-O Farmers Motivation in Exerting Dairy Goats at the Slope Area of Merapi Volcano
Trisakti Haryadi F., Kustantinah, Tommy Andjar C.K........651-654

128. SK-08-O Enhancing Farmer’s Creativity in Dairy Goat Farming (A Case Study in Banyumas District)
Moch. Sugiarto...655-658

129. SK-10-O Utilization of Communication Media in the Process of Extension to Develop Farm Business at Minahasa District North Sulawesi Province
Anneke K. Rintjap, Jolanda K.J. Kalangi, Maasye T. Massie.....659-663

130. SK-11-O The Influence of Dairy Farming Motivation on Dairy Cows Productivity in Different Disaster Prone Areas of Merapi Volcano
S. Andarwati, F. Trisakti Haryadi, B. Gunctoro, E. Sulastrı........664-667
131. SK-12-P Potential and Opportunities of Livestock Development in 24 Locations PSDSK Assistance of BPTP Support for Food Security
 Titim Rahmawati and Yoshi Tri Sulistyaningsih..........................668-672

132. SK-13-O Cattle Farmer’s Characteristics In West Timor (Case Study on Nekmese Farmers Group, Usapinonot, North Central Timor, Nusa Tenggara Timur)
 Paulus Klaau Tahuk., Endang Baliart., Subur Priyono Sasmito Budhi and Panjono..673-677

133. SK-15-P Estimation of the Peranakan Ongole Cattle Output in Klirong, Kebumen, Central of Java

Animal Products Technology

134. TD-01-O Effects of Hibiscus sabdariffa and Schleichera oleosa Liquid Smoke on Lipid Content, Lipid Oxidation and Residual Nitrite in Se’i (Rotenese Smoked Beef)
 Gemini E.M. Malelak, I.G.N. Jelantik, Maria R. Denoratu, Geertruida M Sipahelut, I.G.N. Jelantik..........................683-687

135. TD-02-O Chemical Composition and Antioxidative Potential of Chicken Sausage with Substitution of Tempe Jamhari, Yuny Erwanto, Listia Kusumasari Nurhanifah........688-692

136. TD-04-O In Vitro Antioxidant Activity of Beef Lung Protein Hydrolysates
 Khothibul Umam Al Awwaly, Suharjono Triatmojo, Wayan T. Artama, Yuny Erwanto..693-693

137. TD-05-O Carcass Production and Chevon Quality of Kacang Buck Reared Traditionally in Grobogan, Central Java, Indonesia
 Retno Adiwinarti, I Gede Suparta Budisatria, Kustantinah, Rusman..694-698

138. TD-06-O Fraud Identification in Meatballs Product Using Porcine Detection KIT and Multiplex Polymerase Chain Reaction Methods
 Tridjoko Murti, Christina Admantin, Umar Santoso, Dyah Widiasih, Aris Haryanto..699-703

139. TD-07-O Identification of Dog Meat Species by Polymerase Chain Reaction (PCR)
 Dyah Ayu Widiasih, Cynthia Debbi Ratnasari, Yatri Drastini, Tridjoko Wisnu Murti..704-708

140. TD-08-O Study on the Physico-Chemical Characteristics and Microstructure of Meat from Goat Given Ration Papaya Leaves (Carica papaya L.)
 Muh. Ichsan Haris, Soeparno, Umar Santoso, Rusman......... 709-713
The Effect of Acetic Acid Concentration and Curing Time on the Characteristics of Native Chicken Legs Skin Gelatin
Meity Sompie, S. E. Siswosubroto and J. H. W Pontoh

Antibacterial Activity of Fermented Milk Cultured with Yeast-LAB and Added Sweet Corn Against Pathogenic Bacteria
Yurliasni, Yusdar Zakaria, Zuraida Hanum and Sitti Wajizah

Effect of Storage Period Eggs on Egg Quality Characteristics Naked Neck Chicken
Tatan Kostaman and Soni Sopiyana

Study The Quality of Multi Probiotic Fermented Milk Made from Cow’s Milk and Goat’s Milk
Eni Robiyati, Tridjoko Wisnu Murti, Harisuddin Lutfan Jundi, Fajar Ramadhan

Development of Halal Goat Cheese using Rennet Like from Vegetable Source as Replace to Those of Commercial Rennet Source
Widitya Tri Nugraha, Tridjoko Wisnu Murti, Irma Sri Novitasari, Tri Kartika Sari, Gangga Murcita, Gregorius Riswan Timur Wijakangka

The Characteristics of Salted Chicken and Duck Egg by using Traditional Roasting
Nurliyani, Anggi Hartawan, Yulianto Adi Nugroho, Indratiningsih

Capability of Isolates Probiotic Bacteria, Isolated From Spontaneous Fermented goat Milk as Starter In milk Fermentation
Afriza Yelnetty, Purwadi, Arie Mirah

Changes in physico-chemical and sensory characteristics of concentrated yogurt made from goat milk during storage
Juni Sumarmono, Mardiati Sulistyoawati, and Triana

Development of New Biostarter Medium Using Local Raw Materials for Composting of Elephant Feces
Nanung Agus Fitriyanto, Suharjono Triatmojo, Tri Sunu Dane Wibawa

Implementation of Good Manufacturing Practices System in Halal Certified Chicken Slaughterhouses in Daerah Istimewa Yogyakarta
Edi Suryanto, Tridjoko Wisnu Murti, Yatri Drastini, Rusman, Bastoni, Umar Al Faruqi and Ismatullah Salim
<table>
<thead>
<tr>
<th>Page</th>
<th>Document Code</th>
<th>Title</th>
<th>Authors</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>151.</td>
<td>TLL-03-O</td>
<td>The Influence of Tanning Material Difference on the Physical Quality</td>
<td>RLM. Satrio Ari Wibowo, Titik Anggraini, Ambar Pertiwininggrum</td>
<td>761-765</td>
</tr>
<tr>
<td></td>
<td></td>
<td>of the Skin of Puffer Fish (Arothon reticularis)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>152.</td>
<td>TLL-04-P</td>
<td>The Effect of Composting Liquid Organic Fertilizer Processing Residues</td>
<td>Eulis Tanti Marlina, Yuli Astuti Hidayati, Tb. Benito A. Kurnani</td>
<td>766-769</td>
</tr>
<tr>
<td></td>
<td></td>
<td>on Compost Quality</td>
<td></td>
<td></td>
</tr>
<tr>
<td>153.</td>
<td>TLL-05-P</td>
<td>Utilization of Bee Nest Waste as a Natural Disinfectant on Hatching</td>
<td>Ellin Harlia, Andriyanto, Eulis Tanti Marlina, Denny Suryanto</td>
<td>770-773</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Eggs Poultry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>154.</td>
<td>TLL-06-P</td>
<td>Quality Vermicompost (Content N, P, K) From Beef Cattle Waste</td>
<td>Yuli Astuti Hidayati, Sudiarto, and Wowon Juanda</td>
<td>774-777</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Treatment Through Integrated</td>
<td></td>
<td></td>
</tr>
<tr>
<td>155.</td>
<td>TLL-08-O</td>
<td>The Application of Secang Natural Dye on Sheep Leather Crust Suede</td>
<td>Entin Darmawati, Suwarjono Triatmojo and Diana Ross Arief</td>
<td>778-784</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Using Ikat Jumputan Method</td>
<td></td>
<td></td>
</tr>
<tr>
<td>156.</td>
<td>TLL-09-O</td>
<td>New Technique to Detect Pig Hair by Immunochromatographic Rapid Test</td>
<td>Yatri Drastini, Sumantri, Christina Yuni Admantin, Tridjoko Wisnu Murti</td>
<td>785-788</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>157.</td>
<td>TLL-10-O</td>
<td>Isoptericola sp. A10-1, Chitinase Producing Actinobacterium Isolated</td>
<td>Amrih Prasetyo, Lies Mira Yusiati, Yuny Erwanto, Wihandoyo, Nanung Agus Fitriyanto, Tomoyuki Nakagawa and Takashi Hayakawa</td>
<td>789-792</td>
</tr>
<tr>
<td></td>
<td></td>
<td>from Indonesian Tropical Shrimp Pond Waste Water</td>
<td></td>
<td></td>
</tr>
<tr>
<td>158.</td>
<td>TLL-11-O</td>
<td>Production and Application of Keratinase Enzyme of Bacillus spp. Isolate</td>
<td>Theresia Galuh Wandita, Nanung Agus Fitriyanto, Suwarjono Triatmojo</td>
<td>793-797</td>
</tr>
<tr>
<td></td>
<td></td>
<td>by Using Raw Feather as Substrate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>159.</td>
<td>TLL-12-O</td>
<td>Different Effect on the Quality of Organic Fertilizer Fermentor of</td>
<td>Dedes Amertaningtyas, Trinil Susilawati and Lilik Eka Radiati</td>
<td>798-802</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ongole Crossbred Cattle’s Feces</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Certified Cattle Slaughterhouses in Daerah Istimewa Yogyakarta</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Nutritive Values of Rice Straw Fermentation Used Carbon Sources on Different Level with Various of Inoculant Levels *Aspergillus niger* and *Lactobacillus plantarum*

R. Agus Tri Widodo Saputro¹, Nono Ngadiyono², Lies Mira Yusiati³, I Gede Suparta Budisatria⁴

¹Agricultural High School in Magelang
²Faculty of Animal Science, Gadjah Mada University Yogyakarta
Corresponding author: lorenzarockduth@yahoo.co.id

ABSTRACT: Utilization of agricultural waste products (rice straw) as the basic feed into the strategic thing to be developed to meet the needs of fibrous feed for cattle. Cellulolytic microbes and lactic acid bacteria are sources of inoculum that can improve the quality of rice straw as feed fibrous base. The study was conducted with the aim to obtain the appropriate carbon source for the growth of *Aspergillus niger* and *Lactobacillus plantarum*. The microbial are grown with solid and semi-solid method. The sources of carbon treatment were given two kinds of substrates, namely molasses and rice bran. The treatment of *Aspergillus niger* with a level of 0.5, 10, and 15%. Administration of *Lactobacillus plantarum* was 10% in each treatment. Fermentation is carried out for 21 days. The variables were observed in this study were pH, lactic acid, DM, OM, CP, CF, NDF, ADF, and TDN. Data were analyzed using analysis of variance completely randomized design (CRD) unidirectional pattern and factorial pattern (2 x 4), if there is a real effect, then it was followed by DMRT (Duncan’s Multiple Range Test). The results showed that the best substrate was molasses and *Aspergillus niger* at best level of 15%. It was based on the value of the lowest crude fiber and lactic acid produced the highest (P<0.05). It was concluded that the use of *Aspergillus niger* and *Lactobacillus plantarum* were best for fermented rice straw; the dry matter of *Aspergillus niger* was 15% and *Lactobacillus plantarum* was 10%.

Keywords: Rice straw, fermentation, digestibility

INTRODUCTION

Forage production in the rainy season is abundant, whereas in the dry season forage production, especially those from low grass even if the long drought reduced production. As for how to overcome the shortage of forage grasses can be done for example by way of utilizing the results of agricultural plant waste, such as rice straw. In line with the increasing intensification of food crop cultivation efforts, the results of agricultural crop residues, especially rice straw will increase. As for how to overcome the shortage of forage grasses, among others, by way of utilizing the results of agricultural crop residues, one of which is rice straw.

Low levels of digestibility of rice straw, because the bonding that occurs in rice straw (cellulose and hemicellulose) is difficult to be broken down by rumen microbes. Consumed rice straw is also difficult to digest and many are not utilized by the ruminant digestion. Indeed, the improvement of nutritional value can be done through the processing of agricultural waste through physical, chemical, and microbiology. One of them, to improve the quality of rice straw with innovative technology in the form of rice straw fermentation using cellulolytic microbes and lactic acid bacteria (LAB).
Rice straw fermentation using cellulolytic microbial inoculum and LAB, with secrete enzymes cellulose and xylanase by the cellulolytic microbes, cellulose and hemicelluloses is hydrolyzed into simple sugars that subsequently by LAB is converted to lactic acid so that the pH drops and the process defaunation. Thus there will be an increase in the digestibility of dry matter and total digestible nutrients (TDN). This indicates that the cellulolytic microbes can produce cellulose and xylanase enzymes capable of breaking down lignocelluloses bonds so as to hold the penetration to break down and degrade the cell walls to further convert into simple carbohydrate compound which is used as a substrate by *Lactobacillus plantarum* to produce lactic acid to lower the pH. Cellulolytic microbial isolates and *Lactobacillus plantarum* can be used as treatment fermented rice straw which gives results in improving the quality of the feed substances by lowering the coarse fiber content and improve digestibility of feed, so that the rice straw can be improved nutritional value by using multiple levels of *Aspergillus niger* and *Lactobacillus plantarum*.

MATERIALS AND METHODS

Microbial source used was *Aspergillus niger*, collection of the University Centre for Biotechnology Universitas of Gadjah Mada and *Lactobacillus plantarum*, collection of Nutritional Biochemistry Laboratory of the Faculty of Animal Science, Universitas Gadjah Mada. The fermented material is rice straw and bran IR64 obtained from farmers in the district of Magelang, and molasses. It also used reagents for microbial growth, CMC-ase activity determination, determination of lactic acid levels by Baker and Summerson method, and determination of the chemical composition of fermented rice straw with proximate method.

Aspergillus niger was grown in the sterile Potato Dextrose Broth (PDB) medium, then incubated at room temperature for 4 days. *Aspergillus niger* was then tested to determine its cellulolytic ability and CMC-ase activity. *Lactobacillus plantarum* was grown in sterile liquid Man Rogosa Sharpe (MRS) medium then incubated for 24 hours. This study aims to increase microbial isolates of *Aspergillus niger* and LAB (*Lactobacillus plantarum*) and studying it. The study begins from enrichment (enrichment culture) isolates and optimizes isolates with different temperature and time. *Aspergillus niger* was grown in liquid PDB medium sterile, then reproduced in the semi-solid fermentation. Semi-solid medium is a medium GDP plus 10% rice straw substrate. Fermentation is done for 4 days. At the end of fermentation is determined CMC-ase activity of his. Rice straw Fermentation were using two kinds of treatment, the levels of *Aspergillus niger* (0, 5, 10, and 15%) and the kinds of carbon sources (molasses and rice bran) that in studies using analysis of variance completely randomized factorial 2x4 pattern. Implementation begins with the fermentation of rice straw chopping fresh rice straw with a size of 3 to 5 cm. Furthermore, rice straw is weighed as much as 100 g was mixed with a carbon source is molasses or rice bran each 2% of the total as feed then coupled with *Aspergillus niger* with a level of 0, 5, 10, and 15% of the total as feed and 10% *Lactobacillus plantarum* in all levels. Once thoroughly mixed and then put into a glass fermenter, then pressed so dense that the air out and become anaerobic atmosphere tube to be incubated for 3 weeks at room temperature. After incubation for 3 weeks, fermentation is terminated and the weighing is done to determine the loss of dry matter (DM).

Data weight loss, pH, lactic acid and chemical composition of fermented rice straw were analyzed using analysis of variance completely randomized design (CRD) 2x4 factorial design. Further tests followed by Duncan’s Multiple RangeTest (DMRT) to find out the difference between the mean (Steel and Torrie, 1991).
RESULTS AND DISCUSSION

Cellulolytic activity *Aspergillus niger*

The test results CMC-ase activity of *Aspergillus niger* showed enrichment in semisolid condition produces CMC-ase activity which is better than the enrichment in liquid form. Medium in the form of a liquid medium consisting of the GDP, while the semisolid medium is a medium comprising a substrate, namely GDP and rice straw. Many rice straw contain cellulose that is capable hydrolysed by *Aspergillus niger*. Cellulose can be hydrolyzed by the enzyme is acid-swollen cellulose, carboxymethyl cellulose (CMC), cellulose azure, and trinitrophenyl Cm-cellulose hydrolyzed by endoglucanases (Coral *et al.*, 2002). The addition of rice straw in semisolid medium causes the activity of *Aspergillus niger* is better than that without given (liquid medium) because substrat sources used will be complete. CMC-ase activity on *Aspergillus niger* using PDA medium with cellulose substrate is added 0.542 U/ml (Narasimha *et al.*, 2005). Medium according to research results Kasmiran and Tarmizi (2012) that the enzyme activity of *Aspergillus niger* on sustrat coconut pulp with long incubation four (4) days showed large hasilse 2.39 U/ml. By looking at the increase in enzyme activity when used in semisolid medium showed fermentation method can be used to multiply the inoculum in the fermentation process (Table 1).

<table>
<thead>
<tr>
<th>Enrichment</th>
<th>CMC-ase (U/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liquid</td>
<td>4.644</td>
</tr>
<tr>
<td>Semisolid</td>
<td>5.492</td>
</tr>
</tbody>
</table>

Nutritional Value of Rice Straw Fermentation

Level *Aspergillus niger* and the kinds of carbon sources do not provide significant effect on dry matter (DM) rice straw fermentation. This is consistent with the results of research Dradjat *et al.* (2013) who did the fermentation of rice straw to feed cattle Bali basis. *Aspergillus niger* inoculum levels give real effect to the content of organic matter rice straw fermentation (P<0.05). Provision of 5% led to significantly increase the levels of organic matter, however, the increase in *Aspergillus niger* from 5 to 10% does not lead to an increase in organic matter. This is consistent with the results Kasmiran (2011) using local microorganisms to ferment rice straw. Provision of *Aspergillus niger* inoculum with different levels of influence on the levels of crude protein (P<0.05). Provision of *Aspergillus niger* as much as 5 and 15% led to significantly increase levels of crude protein with the highest levels resulting from *Aspergillus niger* inoculum level was 5%. Giving molasses as the carbon source resulted in CP levels were higher than rice bran (P<0.05). Provision of *Aspergillus niger* inoculum levels give real effect to changes in crude fat (CF) (P<0.05). The higher the level of inoculum administration increases levels of crude fat. The highest crude fat produced from *Aspergillus niger* inoculum levels are respectively 15, 10, 5 and the lowest This is consistent with the results of research Irawan (2012) with 10% giving buffalo rumen contents for the fermentation of rice straw.

Provision of *Aspergillus niger* inoculum levels give real effect to changes in crude fiber (CF) (P<0.05). Provision of *Aspergillus niger* inoculum will hydrolyze crude fiber thereby increasing the digestibility. Lowest crude fiber produced from *Aspergillus niger* inoculum levels are respectively 15, 5, 10, and the highest 0%. Giving inoculum of 5 and 10% did not make a difference, but the granting of 0 and 15% make a difference. Provision of *Aspergillus niger*
inoculum level does not give real effect to changes hay NDF fermentation. Provision of *Aspergillus niger* inoculum levels seem to significantly affect change in the ADF (P<0.05). The highest ADF produced from *Aspergillus niger* inoculum level row was 0, 15, 5, and the lowest 10%. Giving inoculum of 0, 5, and 15% did not make a difference, but it makes a difference to the level of the provision of 10%. Generally *Aspergillus niger* are capable of producing cellulytic enzymes and amylolytic enzymes such as amylase and gluco-amylase. Cellulose is a component commonly found in plants. *Aspergillus niger* is able to break down cellulose into simple sugars. Crude fiber is able to be hydrolyzed by *Aspergillus niger* using the synergy of three types of enzymes, namely cellobiohydrolase, endoglucanase and β-glucosidase (Bath, 2000 cit. Narasimha et al., 2005). This ability causes the crude fiber content decreased. This is consistent with the results of research Lamid (2006) fermentation of rice straw by adding rumen bacteria xylanolytic origin. Decline in crude fiber in fermented rice straw by giving some cedar *Aspergillus niger* lower levels of crude fiber according to the results of research Kusumaningrum et al. (2012).

Provision of *Aspergillus niger* inoculum levels give real effect to the change NFE (P<0.05). The highest NFE produced from *Aspergillus niger* inoculum levels are respectively 5, 0, 10, and the lowest 15% of 42.53 ± 0.80. Giving inoculum of 0 and 5% did not make a difference, but it makes a difference in the level of provision of inoculant 15%. This is consistent with the results of research Kusumaningrum et al. (2012), with the provision of some cedar *Aspergillus niger* on rice straw fermentation extract material without increasing the levels of nitrogen.

Table 2. The nutrient content of rice straw fermentation using *Aspergillus niger* various levels and kinds of different carbon sources

<table>
<thead>
<tr>
<th>Additive Type</th>
<th>Level inoculum</th>
<th>Mean Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0%</td>
<td>5%</td>
</tr>
<tr>
<td>DM Molasses</td>
<td>40.99±2.37</td>
<td>42.83±2.13</td>
</tr>
<tr>
<td>Rice Bran</td>
<td>44.51±0.37</td>
<td>45.31±1.75</td>
</tr>
<tr>
<td>Average</td>
<td>42.75±2.45</td>
<td>44.07±2.21</td>
</tr>
<tr>
<td>Molasses</td>
<td>85.70±0.56</td>
<td>86.40±0.33</td>
</tr>
<tr>
<td>OM Rice Bran</td>
<td>86.42±0.28</td>
<td>88.22±1.09</td>
</tr>
<tr>
<td>Average</td>
<td>86.06±0.56a</td>
<td>87.31±1.23b</td>
</tr>
<tr>
<td>Molasses</td>
<td>5.34±0.17</td>
<td>6.46±0.49</td>
</tr>
<tr>
<td>CP Rice Bran</td>
<td>5.05±0.36</td>
<td>6.23±0.20</td>
</tr>
<tr>
<td>Average</td>
<td>5.20±0.30a</td>
<td>6.34±0.36b</td>
</tr>
<tr>
<td>Molasses</td>
<td>1.82±1.20</td>
<td>1.91±0.75</td>
</tr>
<tr>
<td>EE Rice Bran</td>
<td>1.50±0.27</td>
<td>1.97±0.64</td>
</tr>
<tr>
<td>Average</td>
<td>1.66±0.80a</td>
<td>1.94±0.62a</td>
</tr>
<tr>
<td>Molasses</td>
<td>34.84±0.48</td>
<td>34.02±0.73</td>
</tr>
<tr>
<td>CF Rice Bran</td>
<td>34.66±0.35</td>
<td>34.82±1.58</td>
</tr>
<tr>
<td>Average</td>
<td>34.75±0.38b</td>
<td>34.41±1.18b</td>
</tr>
<tr>
<td>Molasses</td>
<td>43.71±1.65</td>
<td>44.02±0.43</td>
</tr>
<tr>
<td>NFE Rice Bran</td>
<td>45.21±0.48</td>
<td>45.20±0.79</td>
</tr>
</tbody>
</table>
| Average | 44.46±1.37b | 44.61±0.86b| 43.84±2.01b| 42.53±0.80a| 43.85±1.51
The 6th International Seminar on Tropical Animal Production
Integrated Approach in Developing Sustainable Tropical Animal Production
October 20-22, 2015, Yogyakarta, Indonesia

CONCLUSIONS

The use of *Aspergillus niger* and *Lactobacillus plantarum* for the best fermented rice straw. *Aspergillus niger* was 15 and 10% *Lactobacillus plantarum* of dry matter. The use of molasses substrate better when compared to rice bran, it is seen from the results of the analysis of crude proteins, crude fiber, crude fat, ADF, and the results of physical testing rice straw fermentation.

REFERENCES

