The 6th ISTAP International Seminar on Tropical Animal Production

“Integrated Approach in Developing Sustainable Tropical Animal Production”

PROCEDINGS

PART I

October 20-22, 2015
Yogyakarta Indonesia

Published by:
Faculty of Animal Science, Universitas Gadjah Mada Yogyakarta, Indonesia, 2015
LIST OF CONTENTS

PREFACE ..iii
REPORT FROM ORGANIZING COMMITTEE...iv
WELCOME ADDRESS...v
OPENING REMARKS ...vi
LIST OF CONTENTS...vii

PLENARY SESSION

1. Strategies to Increase the Domestic Production of Raw Milk in Indonesia and Other South East Asian Countries
 John Moran and Phillip Morey ..1-11

2. Nutritional Challenges of Lactating Dairy Cattle in a Tropical Climate
 J. K. Bernard ...12-17

3. Feed, Land, and Landscape for Sustainable Animal Production
 Shaukat A. Abdulrazak a and Isaac M. Osugab ...18-18

4. Food Safety Regulation and Halal Food Issues in Indonesia
 Roy Sparringa ..19-19

5. Extension System for Livestock Development in Developing Countries:
 Knowledge Management Application
 Budi Guntoro ..20-27

6. Structural Development of Livestock Farms in a Global Perspective
 Henning Otte Hansen ..28-50

7. Whole Farm Problems with Heat Stress – It’s Not Just for Lactating Dairy Cows
 Allen Young ..51-57

LEAD PAPER

1. Antimicrobial Peptides Expression for Defense System in Chicken Gastrointestinal and Reproductive Organs
 Yukinori Yoshimura, Bambang Ariyadi, and Naoki Isobe58-60

2. Improving Technology Adoption and Sustainability of Programs to Increase Bali Cattle Productivity in West Nusa Tenggara Province, Indonesia
 Yusuf A. Sutaryono, T. Panjaitan, and Dahlanuddin ...61-66

3. The Role of Family Poultry Systems in Tropical Countries
 Yusuf L. Henuk, Monchai Duangjinda, and Chris A. Bailey67-71
SUPPORTING PAPERS

Part I

Animal Feed and Nutrition

1. NM-03-P The Marl and Kaolin in Broiler Diet: Effects on the Bone Weight and the Cutting Yield
 D. Ouachem, A. Meredef, and N. Kaboul
 72-75

2. NM-04-P The Effect of Liquid Nanocapsule Level on Broiler Fat Quality
 Andri Kusmayadi, Zuprizal, Supadmo, Nanung Danar Dono, Tri Yuwanta, Ari Kusuma Wati, Ronny Martien, Sundari
 76-79

3. NM-05-O Production and Egg Quality of Quail Layer Given Diets Containing Different Levels of Crab (Portunus pelagicus) by-Product Meal
 K.G. Wiryawan, Syamsuhaidi, D.K. Purnamasari, and T.S. Binetra
 80-84

4. NM-08-P A Preliminary Study on the Use of Enzyme and Organic Acids in Rice Bran-containing Diet at Two Levels of Dietary Protein for Rabbit
 Tuti Haryati and Yono C. Raharjo
 85-89

5. NM-09-O Efficacy of Toxin Binder in Reducing Induced Aflatoxin B and Ochratoxin A in Broiler Feed
 Anjum Khalique, Muhammad Umer Zahid, Jibran Hussain, Zahid Rasool
 90-93

6. NM-10-O Evaluation of Local Feed in Broiler Diets in Small Scale Farm in Palu Central Sulawesi
 Hafsah, Hidayat, Fatmawati, M. Sagaf, Mappiratu, and T. Sapan
 94-99

7. NM-11-O Digestibility and Nutritional Value of Gedi (Abelmoschus manihot (L.) Medik) Leaves Meal in the Diet of Broilers
 Jet Saartje Mandey, Hendrawan Soetanto, Osfar Sjofjan, Bernat Tulung
 100-104

8. NM-12-O Utilization of Skipjack Tuna (Katsuwonus pelamis L.) Gill in Diet as a Source of Protein on Carcass Quality of Broiler Chickens
 Jein Rinny Leke, Jet S. Mandey, Meity Sompie, Fenny R. Wolayan
 105-109

9. NM-13-O The Dynamics of Indigenous Probiotics Lactic Acid Bacteria on Growth Performance, Total Adherence Bacteria, and Short-Chain Fatty Acids Production in the Ileum of Male Quail
 Sri Harimurti, Sri Sudaryati and Bambang Ariyadi
 110-110
10. NM-14-O Selection of Human-origin Lactobacillus Strains as Probiotics with Capability in Synthesizing Conjugated Linoleic Acid and Alleviating Hyperglycemia in Rats (Rattus norvegicus) in Vivo
 Widodo, Pradipta Ayu Harsita, Samuel Aditya, Nosa Septiana Anindita, Tutik Dwi Wahyuningsih and
 Arief Nurrochmad...111-116

 Lilik Retna Kartikasari, Adi Magna Patriadi Nuhriawangs, Winny Swastike and Bayu Setya Hertanto...............117-117

12. NM-16-O Performance of Japanese Quails Fed Different Protein Levels and Supplemented with Betaine
 Adi Ratriyanto, Rysca Indreswari, Adi Magna Patriadi Nuhriawangs, Apriliana Endah Haryanti....................118-122

13. NM-17-O The Influence of Vitamin D3 Levels on Diets with Phytase on Production Performance of Layer Quail (Coturnix coturnix japonica)
 Adi Magna Patriadi Nuhriawangs, Adi Ratriyanto, Winny Swastike, Rysca Indreswari, Ahmad Pramono and Try Haryanto.............123-126

14. NM-20-O Phytobiotics Habbatus Sauda and Garlic Meal: Are Still Efficacious During the Spread of Marek’s Disease Outbreak?
 N.D. Dono, E. Indarto, Kustantinah, Zuprizal...127-131

15. NM-22-O The Effect of Dietary Calcium and Phosphorus Level on Serum Mineral Contents of the Bantul Local Duck within a Day
 H. Sasongko, T. Yuwanta, Zuprizal, Supadmo, and I. Widiyono...132-132

16. NR-01-P Suplementation Local Feed Urea Gula Air Multinutrient Block and Different Levels of Sulphur for Increase Lactation Productivity Doe Also Decrease Kid Mortality Bligon Goat Grazed at Timor Savannah
 Arnold E. Manu, Yusuf L. Henuk, H.L.L.Belli, M.M. Kleden......133-137

17. NR-02-P Methane Production and Rumen Fermentation Characteristics of Buffalo Ration Containing Sorghum Silage with Rumen Simulation Technique (RUSITEC) Methods
 Teguh Wahyono, Dewi Apri Astuti, Komang G. Wiryawan, Irawan Sugoro, Suharyono...138-142

18. NR-04-O Body Weight Gain Response of Sumba Ongole Cattle to the Improvement of Feed Quality in East Sumba District, East Nusa Tenggara, Indonesia
 Debora Kana Hau and Jacob Nulik...143-146
19. NR-05-O Daily Body Weight Gain of Bali Cattle Fed with Leucaena Leucocephala as the Main Ration in West Timor, East Nusa Tenggara, Indonesia
 Jacob Nulik and Debora Kana Hau…………………………………………………………..147-150

20 NR-06-O Tannin Anthelmintic Doses, Metabolizable Energy and Undegraded Protein Contents of Rubber Leaves (Hevea brasiliensis) as Herbal Nutrition for Goats
 Sri Wigati, Maksudi Maksudi, Abdul Latief and Eko Wiyanto ..151-155

21. NR-07-P Consumption and Digestibility of Nutrients in Bali Cattle at the Last Period of Pregnancy Kept under Semi Intensive System Supplemented with Nutritive Rich Feed Contained Lemuru Oil and Zinc
 Erna Hartati, E.D. Sulistijo, A. Saleh………………………………………………………156-160

22. NR-08-P Preliminary Screening for Anthelmintic Potential of Sesbania grandiflora Leaves for Parasitic Infected Goats in Short-Term Trial
 Mohd Azrul Lokman, Kanokporn Phetdee, Sathaporn Jittapalapong and Somkiert Prasanpanich………………………………………………161-165

23. NR-09-O The Effect of Urea Treated Straws and Urea-Molasses Feed Blocks (UMB) on Reproductive Performance of Libyan Barbary Sheep
 Mabruk, H.S., H. A. Salim, A. E. Benshaban, A.E. Ahtash, H.E. Daeky and Z.N. Elmeshabic……………………………………166-172

25. NR-11-O Chemical Composition, Antioxidant Compounds and Antioxidant Capacity of Ensiled Coffee Pulp

26. NR-12-O Influence of Starch Type as Substrate Material in Dry Lactic Acid Bacteria Inoculant Preparation on Fermentation Quality and Nutrient Digestibility of King Grass Silage
 B. Santoso, B. Tj. Hariadi and Jeni…………………………………………………………182-186

27. NR-13-O Responses of Growing-Female Crossbred Ettawa Goats Fed Concentrates Containing by product of Traditional Fried Snack Industry with Different Levels of Urea
 A. R. S. Asih, K G. Wiryawan, I. N. Sadia, and Kertanegara………..187-190
28. NR-14-O Restriction Feed and Refeeding Evaluation for Consumption, Feed Cost, Income Over Feed Cost, Percentage of Carcass and Meat Quality Kacang Goat
 Bambang Suwignyo, Miftahush Shirothul Haq, Setiyono, and Edi Suryanto
 ..191-197

29. NR-15-O Characteristics of polyunsaturated fatty acids and nutrient digestibility feed cattle of the fermented rumen fluid by one and two stage in vitro
 Riyanto, J. E. Baliarti, T. Hartatik, D.T. Widayati
 and L. M. Yusiaty
 ..198-202

30. NR-16-P Performance and Economic Efficiency of young Anglo-Nubian Goat Fed Different Protein and Energy
 I-G.M.Budiarsana, Supriyati and L. Praharani
 ..203-207

31. NR-17-P Effect of Choline Chloride Supplementations on Productive Performance of Ettawa Crossbred Goats
 Supriyati Kompiang, I Gusti Made Budiarsana, Rantan Krisnan, Lisa Praharani
 ..208-212

32. NR-18-O Body Weight Gain of Donggala Bull Given Supplement Feed on Basis of Cocoa Pod Husks Fermentation
 F.F. Munier, Mardiana Dewi, and Soeharsono
 ..213-217

33. NR-19-O Influence of Cellulolytic Bacteria from Rumen Fluid on In Vitro Gas Production of Robusta Coffee Pulp (Coffea canephora Sp.) Fermented
 Chusnul Hanim, Lies Mira Yusiati, and Fahriza Anjaya Jazim
 ..218-222

34. NR-20-P Growth and Productivity of Brachiaria brizantha cv MG 5 under the effect of different dose of NPK fertilization
 Nafiatul Umami, Meita Puspa Dewi, Bambang Suhartanto, Cuk Tri Noviandi, Nilo Suseno, Genki Ishigaki, Ryo Akashi
 ..223-227

35. NR-21-O Indigofera Sp as a Source of Protein in Forages for Kacang Goat in Lactation and Weaning Period
 A. Nurhayu and Andi Baso Lompengeng Ishak
 ..228-232

36. NR-22-O Supplementing Energy and Protein at Different Degradability to Basal Diet on Total Protozoa and Microbial Biomass Protein Content of Ongole Grades Cattle
 Dicky Pamungkas, R. Utomo, dan M. Winugroho
 ..233-237

37. NR-24-O Nutritive Evaluation of Pineapple Peel Fermented by Cellulolytic Microbe and Lactic AcidBacteria by In Vitro Gas Production Technique
 Lies Mira Yusiaty, Chusnul Hanim and Caecilia Siska Setyawati
 ..238-242
38. NR-25-O The Supplementation of ZnSO\textsubscript{4} and Zn-Cu Isoleusinate in the Local Feed Based at Last Gestation Period on Dry Matter Consumption and Digestibility and Calf Birth Weight of Bali Cattle
 FMS Telupere, E Hartati, and A. Saleh.................................243-247

39. NR-26-P Local Micro Organisms (LOM) as an Activator to Enhance the Quality of Various Plant Waste as Feed
 Andi Ella, A. Nurhayu and A. B. Lompengeng Ishak..................248-251

40. NR-27-O Organic Acid and Inhibition of Complete Silage Ration on the Growth of Salmonella enteritidis
 Allaily, Nahrowi, M. Ridla, M. Aman Yaman............................252-256

41. NR-28-O The utilization of some feed supplement by using or without molasses on local male sheep on fermentation results in rumen liquid, daily live weight gain, production, C/N ratio and water content of feces
 Suharyono, Teguh Wahyono, C. Ellen. K and Asih Kurniawati....................257-260

42. NR-29-O Evaluation of \textit{Albaiza chinensis} as Tannins Source for in Vitro Methane Production Inhibitor Agents Sheep Rumen Liquor
 Anas, M. A., Yusiati, L. M., Kurniawati, A., Hanim, C.................261-265

43. NR-30-O Growth and Productivity of \textit{Sorghum Bicolor} (L.) Moench in Merapi Eruption Soil with Organic Fertilizer Addition
 Suwignyo, B, B. Suhartanto, G. Pawening, B.W.Pratomo...........266-270

44. NR-31-P Quality and Storability of Pelleted Cassava (\textit{Manihot utilisima}) Leaves var. Bitter
 Ristianto Utomo, Subur Priyono Sasmito Budhi, Cuk Tri Noviandi,
 Ali Agus, and Fidrais Hanafi...271-274

45. NR-32-O Biomass Production of Pueraria javanica Using Rhizobium Inoculant and Urine Bali Cattle in East Borneo
 Ida Ketut Mudhita, Nafiul Umami, Subur Priyono Sasmito Budhi
 and Endang Baliarti...275-280

46. NR-33-P The Effect of Using Different Sources of Carbohydrates to Feed Efficiency on Indigenous Thin Tailed Male Lamb
 Muktiani, A, A. Purnomoadi, E. Prayitno................................281-285

47. NR-35-O Substitution of Concentrate by Protein Source Forage for Growing Heifer of Friesian Holstein (FH)
 Y. Widiawati and M. Winugroho..286-290

48. NR-38-O The Use of \textit{Tricoderma sp.} as a Starter of Fermentation Dry Teak Leaves (\textit{Tectona grandis}) as Animal Feed
 Yunianta and Hartatik..291-295
49. NR-39-P Nutritive Values of Rice Straw Fermentation Used Carbon Sources on Different Level With Various of Inoculant Levels *Aspergillus niger* and *Lactobacillus plantarum*
R. Agus Tri Widodo Saputro, Nono Ngadiyono, Lies Mira Yusiati, I Gede Suparta Budisatria .. 296-300

50. NR-40-O The Fat Protective Effect of Fish Oil, Sunflower Seed Oil and Corn Oil on Fluid Rumen Fermentation Parameters
Agustinah Setyaningrum, Soeparno, Lies Mira Yusiati and Kustantinah .. 301-305

51. NR-41-O The Effect of Supplementation of Gliricidia or Rice Bran on Liveweight Gain, Feed Intake and Digestibility of Kacang Goat Fed Mulato Grass
Marsetyo, Damry and Mustaring .. 306-310

52. NR-42-P In Sacco Feeding Value of Multi-Stage Ammoniated Palm Press Fiber
Armina Fariani, Arfan Abrar and Gatot Muslim .. 311-311

53. NR-43-O Alternative Rations to Maintain High Growth Rate of Bali Bulls Fattened with *Leucaena* Based Diet in Sumbawa, Eastern Indonesia
T. S. Panjaitan .. 312-315

54. NR-44-O The Use of Ramie By-Product (*Boehmeria nivea*) Materials as Complete Feed on the Growth and Hematology of Weaning Ettawa Cross Breed Goat
Emmy Susanti, Ali Agus, Y. Y. Suranindayah, and F. M. Suhartati .. 316-320

55. NR-45-O Study on Complete Feed Fermentation of Agricultural By-Product on Performance Etaawah Goat
Yusdar Zakaria, Yurliasmi, Cut Intan Novita ... 321-325

56. NR-46-P Carcass Production and Component of Lamb Provided Metanogenic Inhibitor Feed

Small Ruminant, Beef Cattle, Animal Draught and Companion Animal

57. PPO-01-O Correlation between the Slaughter Weight, Carcass Weight, with Body Measurements of Cattle in Kebumen, Central Java
Setiyono, Suharjono Triatmojo, Trisakti Haryadi, Dino Eka Putra .. 331-334

58. PPO-02-O Production of Stingless Bees (*Trigona sp.*) Propolis in Various Bee Hives Design
Agus salim, Nafiatul Umami, Erwan ... 335-338
<table>
<thead>
<tr>
<th>No.</th>
<th>Publication Code</th>
<th>Title</th>
<th>Authors</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>59.</td>
<td>PPO-03-P</td>
<td>Morphological Characteristics and Performance Boerawa Goat in Tanggamas District Lampung Province</td>
<td>Kusuma Adhianto and M. Dima Iqbal Hamdani</td>
<td>339-342</td>
</tr>
<tr>
<td>60.</td>
<td>PPO-04-P</td>
<td>Growth, Carcass Production and Meat Quality of Ongole Grade Cattle, Simmental Ongole Crossbred Cattle and Brahman Cross</td>
<td>N. Ngadiyono, Soeparso, Panjono, Setiyono and I. Akhmadi</td>
<td>343-347</td>
</tr>
<tr>
<td>61.</td>
<td>PPO-06-O</td>
<td>Growth and Rumen Environment of Pre-weaning Bali Calves Offered Different Forage Based Calf Supplements</td>
<td>IGN Jelantik, ML Mullik, TT Niklaus, T Dami Dato, IG Mahardika, NP Suwiti, C Leo Penu, J. Jeremias, A. Tabun</td>
<td>348-352</td>
</tr>
<tr>
<td>62.</td>
<td>PPO-07-P</td>
<td>Waste Utilization to Increase Productivity Growth Bali Cattle and Coffee Plants</td>
<td>I Nyoman Suyasa and IAP. Parwati</td>
<td>353-358</td>
</tr>
<tr>
<td>63.</td>
<td>PPO-08-O</td>
<td>Effect of Different Lands on Heat Tolerance Coefficient and Body Weight Gain of Ram Fat Tailed Sheep</td>
<td>Rachmawati, A., H. Nugroho and E. Y. Wanto</td>
<td>359-359</td>
</tr>
<tr>
<td>64.</td>
<td>PPO-09-O</td>
<td>The Effects of Hair Colors Differences on the Performance of Etawah Grade Doe</td>
<td>I Gede Suparta Budisatria, Panjono, Dyah Maharani</td>
<td>360-364</td>
</tr>
<tr>
<td>65.</td>
<td>PPO-10-P</td>
<td>Age and Body Weight at Puberty and Service per Conception of Ongole Crossbred Heifer on Smallholder Farming System</td>
<td>Endang Baliarti, Bayu Andri Atmoko, Febri Aryanti, Nono Ngadiyono, I Gede Suparta Budisatria, Panjono, Tri Satya Mastuti Widi, M. Danang Eko Yulianto, Sigit Bintara</td>
<td>365-369</td>
</tr>
<tr>
<td>66.</td>
<td>PPO-11-O</td>
<td>Performance of Three Breeds of Sudanese Cattle</td>
<td>Hassan Ishag Hassan Haren and Hatim Idris</td>
<td>370-373</td>
</tr>
</tbody>
</table>

Poultry Science

<table>
<thead>
<tr>
<th>No.</th>
<th>Publication Code</th>
<th>Title</th>
<th>Authors</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>67.</td>
<td>PU-01-P</td>
<td>Biosecurity Measurements in Poultry Farming System in Kuwait</td>
<td>A.A. Alsaffar</td>
<td>374-376</td>
</tr>
<tr>
<td>68.</td>
<td>PU-03-O</td>
<td>Effect of Mating and Polymorphism Insulin Like Growth Factor Binding Protein 2 Gene on Body Weight and Heritability of Kampung Chicken</td>
<td>Sri Sudaryati, J.H.P. Sidadolog, Wihandoyo, W.T. Artama</td>
<td>377-381</td>
</tr>
<tr>
<td>69.</td>
<td>PU-05-O</td>
<td>The Residue Profile of Ciprofloxacin in Broiler Muscle and Liver</td>
<td>Agustina Dwi Wijayanti, Ambarwati, Wa Ode Sitti Falah Ramli</td>
<td>382-386</td>
</tr>
</tbody>
</table>
Selection for 10 Weeks Old Body-Weight on Sentul Chicken
Sofjan Iskandar and Tike Sartika .. 387-390

Analysis of Reproductive Potential and Hatchability of Naked Neck and Normal Hens
Jafendi H.P. Sidadolog, Tri Yuwanta, Wihandoyo, Sri Harimurti, Sri Sudaryati, Heru Sasongko and Bambang Ariyadi 391-396

Localization and Molecular Size of Mucin2 Glycoproteins Forming the Gut Mucosal Barrier in the Indonesian Indigenous Naked Neck and Normal Feathered Chickens
B. Ariyadi, J.H.P. Sidadolog, S. Harimurti, S. Sudaryati, and Wihandoyo ... 397-400

Milk Quality Of Anglo Nubian X Etawah Grade Goats And Saanen X Etawah Grade Goats At First Kidding Period
Lisa Praharani, Supryati, and Rantan Krisnan .. 401-405

Performance of Dairy Cattle with Supplementation of Rumensin, Garlic Husk (*Allium sativum*) and Organic Minerals in Ration
Caribu Hadi Prayitno, Suwanto, and Afifah Noor Hidayah 406-409

Trends of Dairy Population and Milk Production in Boyolali, Central Java, Indonesia
N. Hidayah, B. Guntoro, E. Sulastri, Y.Y. Suranindyah 410-414

Changes in Pathogen Number during Preservation of Milk Derived from Mastitic Dairy Cows
N. Isobe, K. Hisaeda, T. Koshiishi, M. Watanabe, H. Miyake, Y. Yoshimura ... 415-417

Diacylglycerol Acyltransferase1 (DGAT1) Gene Polymorphism in New Zealand Holstein Friesian Cattle under Dairy Breeding Station and Its Correlation with Milk Quality
SA. Asmarasari, C. Sumantri, IW Mathius, A. Anggraeeni 418-422

Reaction of Cathelicidin-2 secreted from goats milk leukocytes to lipopolysaccharide
Moemi Nishikawa, Yukinori Yoshimura, and Naoki Isobe 423-425
PART II

Animal Breeding and Reproduction

79. PPE-01-P Identification of Pure Breed Bali Cattle by Using Molecular Approach
Endang Tri Margawati, Indriawati, Slamet Diah Volkandari and Muhammad Ridwan........426-431

80. PPE-02-P Milk Transmitting Ability of Saanen Bucks under Intensive Management
Anneke Anggraeni...432-436

81. PPE-03-O Genetic Markers of Twinning Births of Local Beef Cattle and Its
Crossbreds in Indonesian
A. Anggraeni, S. A. Asmarasari, H. Hasinah, C. Talib and
B. Tiesnamurti...437-441

82. PPE-04-P Association of Prolactin Gene with Egg Production in PMp Ducks
T. Susanti and I. P. Sari..442-446

83. PPE-05-P Microsatellite analysis of genetic diversity in Pekin, Alabio, and their
crossbred duck populations
L. Hardi Prasetyo, T. Susanti, T. Purwadaria..........................447-447

84. PPE-08-P Genotypic Profile of Ettawa Grade Goat with Different Head and Neck
Color Based on MC1R Gene
Dyah Maharani, I Gede Suparta Budisatria, Panjono, Tety Hartatik
and Slamet Diah Volkandari..448-451

85. PPE-09-O Polymorphism of Promoter Prolactine Gene and Its Association with Egg
Production of Selected Indonesian Kampung Chicken (KUB)
Tike Sartika...452-452

86. PPE-10-O Qualitative And Quantitative Traits of Kokok Balenggek Chicken, the
Rare Indigenous Chicken in West Sumatera
Firda Arlina, Hafil Abbas, Sarbaini Anwar, Jamsari.................453-457

87. PPE-11-O Phenotype Measurements of Bali Cattle Combined with Interviews
of Farmers from Multiple Locations in Indonesia as a Resource for
Development of Breeding Programs
Ann Eriksson, Endang Tri Margawati, Indriawati, Ronny Rachman
Noor, Goran Andersson, Emma M Svensson.............................458-462

88. PPE-12-O Investigating the genetic status of Bali cattle in Indonesia using large scale
genotyping
Emma Svensson, Ann Eriksson, Ida Clemensson Lindell, Endang Tri
Margawati, Rere Indriawati, Ronny Rachman Noor and
Göran Andersson...463-463
<table>
<thead>
<tr>
<th>No.</th>
<th>Code</th>
<th>Title</th>
<th>Authors</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>89</td>
<td>PPE-14-P</td>
<td>Genetic Variation and Phylogenetic Tree of Indonesian domestic Goat</td>
<td>Tety Hartatik, Kustantinah, Ristianto Utomo and Lies Mira Yusiatian</td>
<td>464-469</td>
</tr>
<tr>
<td>91</td>
<td>PRP-02-O</td>
<td>Reproduction Performance of Bali Cow at Three Areas of Bali Province</td>
<td>Andoyo Supriyanto</td>
<td>475-479</td>
</tr>
<tr>
<td>92</td>
<td>PRP-03-O</td>
<td>Blood Lipid Profile of Hypercholesterolemia Rattus norvegicus L. Fed with Sausages Containing Omega 3 and Omega 6 Fatty Acids</td>
<td>Rio Olympias Sujarwanta, Edi Suryanto, Setiyono, Supadmo, Rusman, Jamhari, Yuny Erwanto</td>
<td>480-484</td>
</tr>
<tr>
<td>93</td>
<td>PRP-04-O</td>
<td>The Effect of Kayu Akway (Drymis sp) Extract on The Number of Leukocyte of The Male Mice (Mus musculus L)</td>
<td>Purwaningsih, Angelina N. Tethool</td>
<td>485-488</td>
</tr>
<tr>
<td>94</td>
<td>PRP-05-O</td>
<td>In Vitro Maturation Rate of Bligon Goat Oocytes Supplemented with Gonadotrophin</td>
<td>Diah Tri Widayati and Mulyoto Pangestu</td>
<td>489-493</td>
</tr>
<tr>
<td>95</td>
<td>PRP-06-P</td>
<td>A Preliminary Study of the Use of Hormones on the Reproductive Performance of some Breeds of Rabbits</td>
<td>Bayu D. P. Soewandi and Yono C. Raharjo</td>
<td>494-497</td>
</tr>
<tr>
<td>96</td>
<td>PRP-08-P</td>
<td>The use of vaginal smear method based on the morphology of the vaginal mucosa epithelial cells for the dairy cows cycle estrus detection</td>
<td>Riyanto, J., Sunarto, S. D. Widyawati and Lutojo</td>
<td>498-501</td>
</tr>
<tr>
<td>97</td>
<td>PRP-09-P</td>
<td>Optimization of Bovine Sperm Sexing: Modification of Column Length and Separation Time</td>
<td>Riasari Gail Sianturi and D.A. Kusumaningrum</td>
<td>502-506</td>
</tr>
<tr>
<td>98</td>
<td>PRP-10-O</td>
<td>The Detailed Motility and Velocity Characteristics of Rams Spermatozoa as Assessed by Computer-Aided Semen Analysis.</td>
<td>Ismaya</td>
<td>507-511</td>
</tr>
<tr>
<td>99</td>
<td>PRP-11-O</td>
<td>The Effect of Trehalose Level In Tris-based Medium On Sperm Membrane Integrity of Boer Goat Semen After Cooling</td>
<td>Nurul Isnaini, Trinil Susilawati and Luqman Hakim</td>
<td>512-514</td>
</tr>
<tr>
<td>No.</td>
<td>PRP-12-O</td>
<td>Title</td>
<td>Authors</td>
<td>Pages</td>
</tr>
<tr>
<td>-----</td>
<td>----------</td>
<td>--</td>
<td>--</td>
<td>-------------</td>
</tr>
<tr>
<td>100</td>
<td>Reproductive Efficiency Of Filial Ongole (Po), Limousin And Simmental Crossbred Cattle At Situbondo District</td>
<td>Kuswati, Doni sonta, Sri Wahyuningsih, Trinil Susilawati and Aulia Puspita Anugra Yekti</td>
<td>515-520</td>
<td></td>
</tr>
<tr>
<td>101</td>
<td>Reproductive Performances of Ongole Crossbred Cattle Using Artificial Insemination Sexed Semen with Different Methods</td>
<td>Trinil Susilawati, Lieyo Wahyudi, Nurul Isnaini and Aulia</td>
<td>521-525</td>
<td></td>
</tr>
<tr>
<td>102</td>
<td>Physiology and Reproduction Responses of Crossing Beef Cows</td>
<td>Aryogi and Y. Adinata</td>
<td>526-531</td>
<td></td>
</tr>
<tr>
<td>103</td>
<td>Supplementation of Cysteine on Plasma Membrane Integrity of Buck Spermatozoa</td>
<td>Sri Wahjuningsih, Nuryadi and Achadiah Rachmawati</td>
<td>532-535</td>
<td></td>
</tr>
<tr>
<td>104</td>
<td>Estrous Behavior in the Thoroughbred-Indonesian Local Crossbred Mares</td>
<td>Muhammad Danang Eko Yulianto, Bambang Purwantara, Amrozi</td>
<td>536-540</td>
<td></td>
</tr>
<tr>
<td>105</td>
<td>Preservation of Bull Cement Technology Applications without Freezing Proceed and Utilization of Epididymis as A Slaughterhouse As A Waste Product to Optimized Bali Cattle Artificial Insemination in Remote Areas</td>
<td>Agung B, Mirandy S. Hermilinda P, T. Considus, Gustari S</td>
<td>541-545</td>
<td></td>
</tr>
<tr>
<td>106</td>
<td>Sperm Quality of Gembrong Goat In Bali, East Java and North Sumatera After Extended With Citrate-egg Yolk, Tris-egg Yolk and Andromed®</td>
<td>Sigit Bintara, Dyah Maharani, I Gede Suparta, Jafendi H, Sumadi, Simon Eleuser, Aron Batubara</td>
<td>546-549</td>
<td></td>
</tr>
<tr>
<td>107</td>
<td>The Response of Gonadotropin Hormone at Different Dosage on Time of Oestrus, The Profile of Progesterone, Estrogen and Corpus Luteum of Ongole Crossed Cows</td>
<td>Lukman Affandhy, D.M. Dikman, Y. Widyaningrum</td>
<td>550-553</td>
<td></td>
</tr>
<tr>
<td>109</td>
<td>Effect of Doe Blood Serum Supplementation to Buck Semen on the Head to Head Agglutination Test</td>
<td>Hassan Ishag Haren, Mohamed Abd Elmoneim Salih, Abdel Aziz Makkawi and Hatim Idris</td>
<td>557-561</td>
<td></td>
</tr>
</tbody>
</table>
Agribusiness and Livestock Socioeconomics

10. SA-01-P Determinant of Intangible Benefit and Cost in Integrated Biosystem Cattle In Yogyakarta
T.A. Kusumastuti, S. Nurtini, R. Widiati, S.P. Syahlani, and M.A.U. Muzayyanah
562-565

11. SA-02-P The Sustainability of Community Development in Area Pig Farming with Serasah System Based on Spiritual and Cultural Aspect
Suci Paramitasari Syahlani, F. Trisakti Haryadi, and Yans Pangerungan
566-570

12. SA-03-O Exploration of Potential Regional Resources for Beef Cattle Farming Development in Java, Indonesia
Rini Widiati, Tri Anggraeni Kusumastuti, Mughtahidah Anggriani Ummul Muzayanah
571-576

13. SA-04-O Technical, Economic and Social Feasibilities of Beef Cattle Development in Bintuni Papua Barat Indonesia
T.W. Widayati, B. Santoso, J. Woran, I.U. Warsono and J.A. Palulungan
577-581

14. SA-05-P Economic Analysis and the Impact of Technology IB Livestock Buffalo of Income Farmer
Rusdiana S. and L. Praharani
582-585

15. SA-06-P Economic Analysis of the Effects of Conservation Land to Provide Feed in Dry Land Farming on the Island East
Helena Dasilva and Sophia Ratnawaty
586-595

16. SA-08-O Analysis of Champion of Milk Cluster Industry in The Province of Central Java-Indonesia
Tridjoko W. Murti, Adiarto, Soedjatmogo, B. Purbaya and R. Kawuri
596-600

17. SA-10-O Small Scale Livestock Farmers’ Disincentives for Animal Disease Prevention and How Incentives Can Be Improved: A Case of Uganda
Juliet Biira
601-605

18. SA-11-O Production Cost Evaluation and Effect of Lactic Acid Bacteria (*Lactobacillus Plantarum*) as Starter with Different Molasses Addition
Zaenal Bachruddin, Mughtahidah Anggriani and Afif Fakhruddin
606-609

19. SA-12-P Livestock Commodities Income Contribution of Farming in the Village of Catur, Kintamani, Bangli
Ida Ayu Putu Parvati and Nyoman Suyasa
610-614
<table>
<thead>
<tr>
<th>No.</th>
<th>Authors and Title</th>
</tr>
</thead>
</table>
| 120. | Assessment of the Calorie-Protein Consumption Pattern among Rural and Low-Income Urban Households in Indonesia
Mujtahidah Anggriani Ummul Muzayyanah, Sudi Nurtini, Suci Paramitasari Syahlani | 615-618 |
| 121. | Constraints of Value Chain in Dairy Industry in Central Java
Budi Guntoro, Rochijan, Budi Prasetyo Widyobroto, Indratiningsih, Nafiatul Umami, Sudi Nurtini, and Ambar Pertiwiningrum | 619-623 |
| 122. | The Agricultural Technology Transfer Agencies Role on Transferring the Biogas Technology to Farmers: A Study Case of Dairy Farmer’s Network Analysis in Umbulharjo Village, Yogyakarta Province, Indonesia
R. Ahmad Romadhoni Surya Putra | 624-628 |
| 123. | Combined Effect of Message Framing and Endorser Credibility to Buying Interest of Yoghurt Product
Tian Jihadhan, Suci Paramitasari Syahlani, F. Trisakti H | 629-633 |
| 124. | The Alternative Livestock and Sustainability of Farmers in Mexico
Ricardo E. Caicedo Rivas, A. Moreno Oceguera, A. de M. Parra Gallegos and M. Paz Calderón Nieto | 634-637 |
| 125. | Farmers’ Perception of Etawah Grade Goat Productivity Based on the Hair Color Differences
I Gede Suparta Budisatria, Panjono, Dyah Maharani | 638-642 |
| 126. | Regional Development for Beef Cattle Farming based on Agricultural by Product in Serdang Bedagai District, North Sumatra Province, Indonesia
Tri Hesti Wahyuni, Sya’ad Afifuddin, Ma’ruf Tafsin and Rahmanta Ginting | 643-650 |
| 127. | Farmers Motivation in Exerting Dairy Goats at the Slope Area of Merapi Volcano
Trisakti Haryadi F., Kustantinah, Tommy Andjar C.K | 651-654 |
| 128. | Enhancing Farmer’s Creativity in Dairy Goat Farming (A Case Study in Banyumas District)
Moch. Sugiaro | 655-658 |
| 129. | Utilization of Communication Media in the Process of Extension to Develop Farm Business at Minahasa District North Sulawesi Province
Anneke K. Rintjap, Jolanda K.J. Kalangi, Maasye T. Massie | 659-663 |
| 130. | The Influence of Dairy Farming Motivation on Dairy Cows Productivity in Different Disaster Prone Areas of Merapi Volcano
S. Andarwati, F. Trisakti Haryadi, B. Guntoro, E. Sulastr | 664-667 |
131. SK-12-P Potential and Opportunities of Livestock Development in 24 Locations PSDSK Assistance of BPTP Support for Food Security
 Titim Rahmawati and Yoshi Tri Sulistyanaingsih..................................668-672

132. SK-13-O Cattle Farmer’s Characteristics In West Timor (Case Study on Nekmese Farmers Group, Usapinonot, North Central Timor, Nusa Tenggara Timur)
 Paulus Kliau Tahuk., Endang Baliarti., Subur Priyono Sasmoto Budhi and Panjono...673-677

133. SK-15-P Estimation of the Peranakan Ongole Cattle Output in Klirong, Kebumen, Central of Java
 Sumadi, N. Ngadiyono, C. T. Noviandi, D. T. Widayati.........................678-682

Animal Products Technology

134. TD-01-O Effects of Hibiscus sabdariffa and Schleichera oleosa Liquid Smoke on Lipid Content, Lipid Oxidation and Residual Nitrite in Se’i (Rotenese Smoked Beef)
 Gemini E.M. Malelak, I.G.N. Jelantik, Maria R. Denoratu, Geertruida M Sipahelut, I.G.N. Jelantik..............................683-687

135. TD-02-O Chemical Composition and Antioxidative Potential of Chicken Sausage with Substitution of Tempe Jamhari, Yuny Erwanto, Listia Kusumasari Nurhanifah...........688-692

136. TD-04-O In Vitro Antioxidant Activity of Beef Lung Protein Hydrolysates
 Khothibul Umam Al Awwaly, Suharjono Triatmojo, Wayan T. Artama, Yuny Erwanto...693-693

137. TD-05-O Carcass Production and Chevon Quality of Kacang Buck Reared Traditionally in Grobogan, Central Java, Indonesia
 Retno Adiwinarti, I Gede Suparta Budisatria, Kustantinah, Rusman...694-698

138. TD-06-O Fraud Identification in Meatballs Product Using Porcine Detection KIT and Multiplex Polymerase Chain Reaction Methods
 Tridjoko Murti, Christina Admantin, Umar Santoso, Dyah Widiasih, Aris Raryaanto...699-703

139. TD-07-O Identification of Dog Meat Species by Polymerase Chain Reaction (PCR)
 Dyah Ayu Widiasih, Cynthia Debbi Ratnasari, Yatri Drastini, Tridjoko Wisnu Murti..704-708

140. TD-08-O Study on the Physico-Chemical Characteristics and Microstructure of Meat from Goat Given Ration Papaya Leaves (Carica papaya L.)
 Muh. Ichsan Haris, Soeparno, Umar Santoso, Rusman............ 709-713
| 141. TD-09-O | The Effect of Acetic Acid Concentration and Curing Time on the Characteristics of Native Chicken Legs Skin Gelatin | Meity Sompie, S. E. Siswosubroto and J. H. W Pontoh | 714-718 |
| 142. TST-02-O | Antibioc bacterial Activity of Fermented Milk Cultured with Yeast-LAB and Added Sweet Corn Against Pathogenic Bacteria | Yurliasni, Yusdar Zakaria, Zuraida Hanum and Sitti Wajizah | 719-723 |
| 143. TST-03-P | Effect of Storage Period Eggs on Egg Quality Characteristics Naked Neck Chicken | Tatan Kostaman and Soni Sopiyana | 724-728 |
| 144. TST-04-O | Study The Quality of Multi Probiotic Fermented Milk Made from Cow’s Milk and Goat’s Milk | Eni Robiyati, Tridjoko Wisnu Murti, Harisuddin Lutfan Jundi, Fajar Ramadhan | 729-732 |
| 145. TST-05-O | Development of Halal Goat Cheese using Rennet Like from Vegetable Source as Replace to Those of Commercial Rennet Source | Widiya Tri Nugraha, Tridjoko Wisnu Murti, Irma Sri Novitasari, Tri Kartika Sari, Gangga Murcita, Gregorius Riswan Timur Wijakangka | 733-737 |
| 146. TST-06-O | The Characteristics of Salted Chicken and Duck Egg by using Traditional Roasting | Nurliyani, Anggi Hartawan, Yulianto Adi Nugroho, Indratiningingsih | 738-742 |
| 147. TST-07-O | Capability of Isolates Probiotic Bacteria, Isolated From Spontaneous Fermented goat Milk as Starter In milk Fermentation | Afriza Yelnetty, Purwadi, Arie Mirah | 743-743 |
| 148. TST-09-O | Changes in physico-chemical and sensory characteristics of concentrated yogurt made from goat milk during storage | Juni Sumarmono, Mardiati Sulistyowati, and Triana | 744-748 |

Waste and Environmental Issues

| 149. TLL-01-O | Development of New Biostarter Medium Using Local Raw Materials for Composting of Elephant Feces | Nanung Agus Fitriyanto, Suharjono Triatmojo, Tri Sunu Dane Wibawa | 749-753 |
| 150. TLL-02-P | Implementation of Good Manufacturing Practices System in Halal Certified Chicken Slaughterhouses in Daerah Istimewa Yogyakarta | Edi Suryanto, Tridjoko Wisnu Murti, Yatri Drastini, Rusman, Bastoni, Umar Al Faruqi and Ismatullah Salim | 754-760 |
151. TLL-03-O The Influence of Tanning Material Difference on the Physical Quality of the Skin of Puffer Fish (*Arotheta reticularis*)
RLM. Satrio Ari Wibowo, Titik Anggraini, Ambar Pertiwininggrum..761-765

152. TLL-04-P The Effect of Composting Liquid Organic Fertilizer Processing Residues on Compost Quality
Eulis Tanti Marlina, Yuli Astuti Hidayati, Tb. Benito A. Kurnani...766-769

153. TLL-05-P Utilization of Bee Nest Waste as a Natural Disinfectant on Hatching Eggs Poultry
Ellin Harlia, Andriyanto, Eulis Tanti Marlina, Denny Suryanto...770-773

154. TLL-06-P Quality Vermicompost (Content N, P, K) From Beef Cattle Waste Treatment Through Integrated
Yuli Astuti Hidayati, Sudiarto, and Wowon Juanda......................774-777

155. TLL-08-O The Application of Secang Natural Dye on Sheep Leather Crust Suede Using Ikat Jumputan Method
Entin Darmawati, Suharjono Triatmojo and Diana Ross Arief...778-784

156. TLL-09-O New Technique to Detect Pig Hair by Immunochromatographic Rapid Test
Yatri Drastini, Sumantri, Christina Yuni Admantin, Tridjoko Wisnu Murti..785-788

157. TLL-10-O Isoptericola sp. A10-1, Chitinase Producing Actinobacterium Isolated from Indonesian Tropical Shrimp Pond Waste Water
Amrih Prasetyo, Lies Mira Yusiati, Yuni Erwanto, Wihandoyo, Nanung Agus Fitriyanto, Tomoyuki Nakagawa and Takashi Hayakawa..789-792

158. TLL-11-O Production and Application of Keratinase Enzyme of Bacillus spp. Isolate by Using Raw Feather as Substrate
Theresia Galuh Wandita, Nanung Agus Fitriyanto, Suharjono Triatmojo...793-797

159. TLL-12-O Different Effect on the Quality of Organic Fertilizer Fermentor of Ongole Crossbred Cattle’s Feces
Dedes Amertaningtyas, Trinil Susilawati and Lilik Eka Radiati...798-802

160. TLL-13-P Implementation of Good Manufacturing Practices System in Halal Certified Cattle Slaughterhouses in Daerah Istimewa Yogyakarta
Bastoni, Nasrul Hidayat, Edi Suryanto, Rusman, Tridjoko Wisnu Murti, Yatri Drastini803-809
Influence of Cellulolytic Bacteria from Rumen Fluid on in Vitro Gas Production of Fermented Robusta Coffee Pulp (*Coffea canephora sp.*)

Chusnul Hanim¹, Lies Mira Yusiatı¹, and Fahriza Anjaya Jazim¹

¹Faculty of Animal Science, Universitas Gadjah Mada
Corresponding email: c.hanim@ugm.ac.id

ABSTRACT: The experiment was done to evaluate the influence of robusta coffee pulp fermented by rumen cellulolytic bacteria on in vitro gas production. The first step of this experiment was cellulolytic inoculum production by using fluid fermentation with cellulose as substrat. The inoculum produced was then used for coffee pulp fermentation. Cellulolytic bacteria was added into 200 g coffee pulp as much as 0%, 5% and 10% based on dry matter. Each treatment had three replicates. Fermentation was carried out at room temperature during 21 days anaerobically. At the end of fermentation, samples were taken out for nutrient determination including physical, chemical qualities, and in vitro gas production. Data obtained were analyzed by one way design and continued by Duncan’s new multiple range test to examine the differences between mean values. The results showed that 5% and 10% cellulolytic bacteria addition decreased pH value, and crude fiber (CF) content as much as 12.89% and 16.32% compared to control (0% of cellulolytic bacteria). Whereas addition of 10% inoculum increased nitrogen free extract (NFE) content. However, cellulolytic bacteria addition up to 10% had no effect on crude protein (CP), extract ether (EE), dry matter (DM), organic matter (OM), glucose, and lactic acid content, as well as in vitro gas production. It could be concluded that cellulolytic bacteria addition in level 5% decreased CF content but did not give positive effect on in vitro gas production.

Keywords: Cellulolytic Bacteria, Chemical Composition, Coffee Pulp, In Vitro Gas Production

INTRODUCTION

Coffee pulp is an abundant agricultural by-product derived from wet processing of coffee berries from the coffee industry. Coffee pulp is the most important by-product of the so called wet coffee processing, as it represents about 40% of the fruit on a fresh weight basis, and 29% on a dry weight basis (Gaime-Perraud et al., 1993). Coffee pulp is the first product obtained during processing, and it represents on a dry-weight basis about 29% of the weight of the whole berry (Ellas, 1979). This may constitute a source of severe contamination and a serious environmental problem. For this reason, efforts have been made to develop methods for its utilization as a raw material for the production of feeds. Fermented coffee pulp is a valid alternative to handling and storing the huge amounts of coffee pulp.

Limitations for the use coffee pulp in animal feeding are connected to its high contents on tannins and caffeine. However, coffee pulp contains proteins, carbohydrates and minerals that may favor its utilization in animal feeding (Mazzafera, 2002). Taking into account the average contents of about 50, 10, 2.5 and 18% for carbohydrate, protein, fat and fibres, coffee pulp appear to be a useful feed supplement for animals (Orozco et al., 2008). Ellas (1979) reported the dried coffee pulp has about 10% crude protein, 21% crude fibre, 8% ash, and 44% nitrogen-free extract, as well as 1.80-8.56 % tannins, and 1.3 caffeine. Due to the presence of these compounds (caffeine,
tannins and polyphenols), these organic solid residues show toxic nature and thus have not been utilized beneficially. This has also led to the problem of environmental pollution (Parani and Eyini, 2012).

Several biological treatments including the use of microorganisms such as yeast, filamentous fungi and bacteria are being applied to improve the nutritional value of coffee pulp. Although solid-state fermentation (SSF) has been used for specific biological detoxification of coffee pulp using filamentous fungi at laboratory scale, no data on the suitability of streptomycetes for this purpose has been reported. The ability of these microorganisms to colonize agro-industrial residues and to produce a wide range of enzyme activities related with lignocellulose degradation make them good candidates for biotechnological recycling of coffee pulp (Orozco et al., 2008). In most cases, the processes have been designed to render coffee pulp suitable for animal feeding, either in the form of silage or as a dried product (Bressani, 1979). Cabezas et al., (1979) reported ensiled coffee pulp produces better performance than dehydrated pulp, due possibly to its better palatability, better digestibility, and lower content of caffeine and tannins.

In this paper, the experiments were conducted to evaluate the influence of robusta coffee pulp fermented by rumen cellulolytic bacteria on in vitro gas production. The effect of the different levels of rumen cellulolytic bacteria on chemical composition and in vitro digestibility were investigated.

MATERIALS AND METHODS

Culture conditions

Following heat sterilization (121 °C for 30 min), the enrichment medium according Omelianski (1902) cit. Skinner (1971), with cellulose as substrate, was inoculated with 10% of rumen liquor. The culture was grown at temperature 39°C, pH 7 for 7 d anaerobically under submerged culture condition. The the culture was then inoculated in growth medium according Omelianski (1902) cit. Skinner (1971), with cellulose as substrate, in the same condition with enrichment culture, and continued by inoculation for fermentation of coffee pulp. The primary bacteria in this product was cellulolytic bacteria.

Fermentation of coffee pulp

After growing for 7 d, the culture of cellulolytic bacteria was mixed to 200 g of air-dried coffee pulp, and incubated anaerobically at room temperature for 21 d. The culture was added to achieve final concentrations of 0, 5, or 10% based on DM of coffee pulp. The final water content of fermentation was 45% for all treatments by adding distilled water. At the end of the fermentation period, pH, glucose and lactic acid was determined. Then, sample was collected, dried at 55°C for 72 h, ground through a 1-mm screen Wiley mill and analyzed for chemical composition as well as for in vitro digestibility gas production.

Analysis of Fermentation Parameters

- **pH of fermentation.** pH of coffee pulp was immediately recorded using a pH meter after fermentation process.

- **Glucose content.** Glucose content was measured according procedure Nelson-Somogyi (Plummer, 1971).

- **Lactic acid content.** Lactic acid content was analyzed following Baker and Summerson method (Hawk et al., 1976)

- **Chemical composition.** The samples, before and after fermentation, were analyzed for chemical composition including dry matter (DM), organic matter (OM), crude fiber (CF), crude
protein (CP), ether extract (EE), and nitrogen free extract (NFE) according to AOAC procedure (2005). These analyses were carried out for original and fermented sample of coffee pulp to determine the effect of fermentation on chemical composition and in vitro digestibility gas production.

In vitro digestibility gas production technique. Determination of in vitro digestibility gas production technique was conducted following procedure described by Menke and Steingass (1988). In vitro incubations were carried out with rumen fluid from two fistulated Ongole Cross Breed previously fed with 40% concentrate feed (rice bran) and 60% Penicetum purpuroides at 5% body weight. The rumen liquor was collected from the beets before they were offered the morning feed into the thermo flask that had been pre-warmed to a temperature of 39°C and was squeezed through four layers of surgical gauze into an Erlenmeyer flask and flushed with CO2 in the laboratory. One part rumen fluid was mixed with two parts buffered mineral solution (1:2 volume/volume) and maintained at 39°C. Approximately 0.300 g of air-dried fermented coffee pulp of known chemical composition that was previously ground through a 1 mm screen was carefully dropped into a 100 ml glass syringe and thereafter, 30 ml this buffered rumen fluid under continuous flushing with CO2 pipetted into incubation syringes containing the ground test substrate. The syringe was tapped and pushed upward by the piston in order to completely eliminate air in the inoculums. The silicon tube in the syringe was then tightened by a metal clip so as to prevent escape of gas. Incubation was carried out at 39±1°C and the volume of gas production was measured at 1, 2, 4, 6, 8, 12, 24, 36, 48 and 72 h, and 72-h cumulative gas production in vitro measured following fitcurve method (Chen, 1994). Blanks were run in triplicates throughout the incubation process.

Experimental Design and Statistical Analysis

Treatments were arranged in a one way design, with the main factors being levels of rumen cellulolytic bacteria (containing 0, 5, or 10% DM basis). Fermentation experiments were separately conducted for each treatment with three replicates each treatment. Air-dried coffee pulp was utilized as substrate for solid state fermentation. The data were analyzed as a one way design. The differences of mean value were analyzed by Duncan’s new multiple range test (Rosner, 1990).

RESULT AND DISCUSSION

Chemical composition of fermented coffee pulp

The chemical composition including DW, OM, CP, CF, EE, and NFE of coffee pulp was 66.00%, 87.01%, 23.27%, 42.73%, 1.46%, and 19.54%, respectively. Fermented coffee pulp had low pH value 5.91, 5.81 and 5.57 with addition of 0, 5, or 10% of rumen cellulolytic bacteria respectively. Addition 10% cellulolytic bacteria decreased pH value of fermented coffee pulp significantly (P<0.05). However, it did not affect lactic acid content, those were 0.12-0.15%.

Table 1. Chemical composition (% DW) and glucose content (mg/g) of fermented coffee pulp with different level of rumen cellulolytic bacteria

<table>
<thead>
<tr>
<th>Chemical composition</th>
<th>Level of inoculum addition (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Dry matterns</td>
<td>58.73±0.04</td>
</tr>
<tr>
<td>Organic matterns</td>
<td>86.97±0.63</td>
</tr>
<tr>
<td>Crude proteinns</td>
<td>25.42±1.15</td>
</tr>
<tr>
<td>Crude fiber**</td>
<td>41.36±0.80</td>
</tr>
</tbody>
</table>
Ether extracts 2.32±0.30 2.85±0.48 2.62±0.33
NFE* 17.87±2.57 23.02±1.62 25.50±0.74
Glucose (mg/g)* 0.09±0.03 0.07±0.05 0.06±0.01

ns not significantly different
* (P<0.05)
** (P<0.01)

Fermentation of coffee pulp using 5 or 10% rumen cellulolytic bacteria decreased CF content 12.89 or 16.32%, and increased NFE content 28.82 or 42.70% compare without inoculum (Table 1). The decrease of the CF content was due to inoculum had cellulases activity (data not shown).

In vitro digestibility gas production

As shown in Table 2, fermented coffee pulp with addition of cellulolytic bacteria did not show significant effect and resulted low cumulative gas production in vitro at 72-h incubation, it means low digestibility of substrate, even though CF content of fermented coffee pulp decreased.

Table 2. Cumulative gas production in vitro (ml/300mg DW), fraction a (ml/300mg DW), b (ml/300mg DW), and c (ml/h) of fermented coffee pulp with different level of rumen cellulolytic bacteria 72-h incubation

<table>
<thead>
<tr>
<th>Level of inoculum addition (%)</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>Total gas production</td>
<td>12.22</td>
<td>12.11</td>
<td>13.63</td>
</tr>
<tr>
<td>a*</td>
<td>-0.63</td>
<td>0.02</td>
<td>0.26</td>
</tr>
<tr>
<td>b*</td>
<td>12.50</td>
<td>12.01</td>
<td>14.19</td>
</tr>
<tr>
<td>c*</td>
<td>0.06</td>
<td>0.05</td>
<td>0.04</td>
</tr>
</tbody>
</table>

ns not significantly different

This phenomenon was due to limitations for the use coffee pulp in animal feeding are connected to its high contents on tannins and caffeine. Tannins are known to confer astringency to foodstuffs and complex proteins, affecting food digestibility and decreasing nitrogen utilization animals (Mazzafera, 2002). Getachew et al. (2004) reported some feeds, such as forage legumes and cottonseed, contain phenolics, alkaloids and saponins that have negative biological effects on microbes and reduce microbial growth in rumen. Tannins are naturally occurring polyphenolic compounds found in plants, which form complexes with feed and microbial proteins and can depress feed digestibility in the rumen.

CONCLUSION

The addition of 5% cellulolytic bacteria improved chemical composition of fermented coffee pulp especially decreased CF content.

REFERENCES

