Ilmu dan Pangan Lokal Hasil Ternak
Ilmu dan Pangan Lokal Hasil Ternak

Soeparno
Edi Suryanto
Setiyono
Nurliyani
R.A.Riastuti
Yuni Erwanto
Suci Paramitasari Syahlani

Fakultas Peternakan
UNIVERSITAS GADJAH MADA
YOGYAKARTA
Ilmu dan Pangan Lokal Hasil Ternak

editor
Prof. Soeparno, Ir. PhD.

penulis
Tim Penulis Fakultas Peternakan
Universitas Gadjah Mada Yogyakarta

tata letak cover & Isi
heinrich

diterbitkan oleh
Fakultas Peternakan
Universitas Gadjah Mada Yogyakarta

Cetakan I Desember 2009

dicetak oleh
CV. Bawah Sadar

isi diluar tanggung jawab percetakan

Hak cipta dilindungi undang-undang. Dilarang memperbanyak sebagian atau seluruh isi buku ini dalam bentuk apapun, baik secara elektronik maupun mekanik, termasuk memfotokopi, merekam, atau dengan menggunakan sistem penyimpanan lainnya, tanpa izin tertulis dari penerbit.
Penganan hasil ternak termasuk pangan lokal hasil ternak sudah dikenal sebagai bahan makanan yang hampir sempurna, karena mengandung gizi yang lengkap dan dibutuhkan oleh tubuh manusia. Gizi pangan hasil ternak termasuk air, protein hewani, energi, mineral dan vitamin sangat dibutuhkan untuk kehidupan. Pangan hasil ternak juga memiliki rasa dan aroma atau flavor yang enak, yang disukai dan dikonsumsi oleh hampir semua orang.

Buku ini dimaksudkan bagi para mahasiswa universitas dari berbagai latar belakang di bidang peternakan sebagai pengantar maupun lanjutan, dan mahasiswa ilmu-ilmu pertanian lainnya, serta bagi mereka yang ingin mempelajari atau mendalami pengetahuan secara teoritis maupun praktis di bidang ilmu dan pangan lokal hasil ternak. Pangan lokal hasil ternak yang dimaksud meliputi daging dan produk daging lokal, susu dan produk susu lokal, telur dan produk telur lokal, keamanan pangan hasil ternak, serta pemasaran pangan lokal hasil ternak.

Bab I dimaksudkan sebagai pengantar umum atau pendahuluan tentang ilmu dan pangan lokal hasil ternak, keamanan pangan hasil ternak dan pemasaran produk pangan lokal hasil ternak. Bab II terdiri atas tiga aspek utama, yaitu ilmu daging dan produk daging, produk daging lokal, dan produk daging non lokal. Bab III berhubungan dengan susu dan produk susu. Bab ini meliputi dua aspek utama, yaitu ilmu susu dan produk susu, dan produk susu lokal. Telur dan produk telur disajikan dalam Bab IV. Dua aspek spesifik dibahas dalam bab IV ini, yaitu ilmu telur dan produk telur, dan produk telur lokal.

Telah diketahui bahwa keamanan pangan termasuk pangan hasil ternak harus dikontrol secara serius, baik oleh produsen maupun konsumen. Oleh karena itu, aspek-aspek keamanan pangan hasil ternak juga disajikan dalam buku ini, yaitu dalam Bab V. Dua aspek utama keamanan hasil ternak yang dibahas dalam bab ini adalah tentang aditif dalam produk ternak, dan kontrol kemanan pangan dalam produk ternak. Buku ini juga dilengkapi dengan satu bab penting, yaitu Bab VI tentang strategi pemasaran produk pangan hasil ternak, yang meliputi kajian empiris dan alternatif pengembangan strategi pemasaran produk pangan lokal hasil ternak.

Sumber-sumber informasi dan/atau pustaka/referensi yang dipergunakan sebagai pendukung utama dalam mewujudkan buku ini sangat dihargai dan telah diakui serta disajikan dengan baik-baiknya.

Editor beserta para penulis mengucapkan terima kasih kepada World Class University Universitas Gadjah Mada atas dukungan finansial untuk mewujudkan buku ini, dan kepada Fakultas Peternakan UGM atas dukungan yang sangat bermanfaat dalam penulisan seluruh naskah buku ini. Editor dan para penulis juga mengucapkan terima kasih kepada semua pihak termasuk mahasiswa yang telah membantu terlaksananya dengan baik penulisan hingga terwujudnya buku ini.

November 2009
Soeparno (Editor)

Edi Suryanto, Setiyono, R.A. Rihastuti, Nurliyani, Yuny Erwanto, Suci Paramitasari Syahlan, dan Soeparno
<table>
<thead>
<tr>
<th>Bab</th>
<th>Judul</th>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAB I</td>
<td>PENDAHULUAN</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Edi Suryanto</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Ilmu dan Kualitas Pangan Hasil Ternak</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Pangan Lokal dan Keamanan Pangan Hasil Tenak</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Pemasaran Pangan Lokal</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Hasil Ternak</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Daftar Pustaka</td>
<td>3</td>
</tr>
<tr>
<td>BAB II</td>
<td>DAGING DAN PRODUK DAGING</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Edi Suryanto dan Soeparno</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Definisi daging dan karkas</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Struktur daging dan karkas</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Serabut otot skeletal</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Otot halus</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Otot jantung</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Jaringan epitel</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Jaringan syaraf</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Jaringan konektif</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Kimia daging dan karkas</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Komposisi kimia otot skeletal</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Faktor-faktor yang mempengaruhi komposisi karkas</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Komposisi fisik karkas</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Produk Daging Lokal</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>Setiyono</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>Bakso</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>Abon</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>Dendeng</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>Sop buntut</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>Sayur asam daging sapi</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Rawon</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Rendang daging</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Gulai daging</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>Kare daging</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>Soto daging sapi</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>Sate padang</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>Beef burger lokal</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>Selongsong sosis dan Sosis</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>Selongsong sosis</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>Sosis</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>Tahap prosesimg sosis</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>Daftar Pustaka</td>
<td>24</td>
</tr>
<tr>
<td>BAB III</td>
<td>SUSU DAN PRODUK SUSU</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>Nurliyani dan Soeparno</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>Kimia Susu</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>Protein susu</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>Lemak susu</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>Laktosa</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>Vitamin dan mineral susu</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>Enzim dalam susu</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>Gas dalam susu</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>Kolesterol</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>Pigmen dalam susu</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>Rasa dan bau susu</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>Fisik Susu</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>Penampakan</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>Densitas</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>Titik beku susu</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>Titik didih susu</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>pH dan keasaman</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>Faktor-faktor yang Mempengaruhi Komposisi Susu</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>Pengaruh bangsa</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>Variasi individu</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>Pengaruh umur</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>Variasi musim</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>Pengaruh pakan</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>Variasi dari pemerahan ke pemerahan dan lama interval diantara pemerahan</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>Periode laktasi</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>Pengaruh spesies</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>Prinsip Teknologi Prosesing Susu Produk-produk Susu Lokal</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>Karamel susu</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>Dodol susu</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>Kerupuk susu</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>Es krim ubi jalar</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td>Dangke</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>Dali</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td>Dadih</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td>Daftar Pustaka</td>
<td>42</td>
</tr>
</tbody>
</table>
BAB IV TELUR DAN
PRODUK TELUR R.A. Rihastuti........ 44
Ilmu Telur dan Produk telur........ 44
Struktur dan komposisi telur......... 44
Perubahan kimia dan fisik telur selama proses dan penyimpanan........ 46
Angka nutrisi telur.................... 49
Produk-produk Telur Lokal........ 49
Pengawetan dan prosesing telur....... 50
Pengawetan telur utuh........ 51
Telur asin.......................... 51
Telur asin rasa jahe, cabe, dan jeruk53
Telur rasa bawang.................... 54
Telur asin rasa bawang........ 55
Prosessing telur...................... 56
Telur pindang....................... 56
Keripik rendang putih telur.......... 58
Telur sosis.......................... 60
Daftar Pustaka......................... 60

BAB V KEAMANAN PANGAN HASIL
TERNAK.............................. 62
Aditif dalam Produk Ternak
Edi Suryanto.......................... 62
Kontrol Keamanan Pangan Produk
Ternak................................. 66
Yuni Erwanto
Sistem manajemen pangan hasil ternak....... 66
Keamanan pangan hasil ternak dari mikrobia........ 67
Residu kimia dalam pangan hasil ternak........... 76
Logam berat pada produk pangan asal ternak........ 79
Daftar Pustaka......................... 81

BAB VI STRATEGI PEMASARAN
PRODUK PANGAN OLAHAN
PETERNAKAN
Suci Paramitasari Syahlani........ 85

Kajian Empiris dan Alternatif
Pengembangan Strategi Pemasaran
Produk Pangan Olahan Lokal........ 85

Peran dan perkembangan pengolahan produk dalam industri pangan........ 85
Kajian empiris peran variabel sikap pada keputusan pembelian berbagai produk olahan peternakan........ 87
Merek asing dan lokal pada produk susu olahan.......................... 89
Fenomena pioneer dan follower brand pada produk susu olahan........ 91
Kepercayaan dan keterlibatan konsumen pada loyalitas merek produk susu olahan.......................... 92
Peran label pangan dalam informasi atribut produk.......................... 94
Studi perilaku agen pengecer susu pasteurisasi.......................... 95
Implikasi manajerial pada manajemen pemasaran produk olahan peternakan lokal.......................... 96
Daftar Pustaka.......................... 98
Daftar Tabel

BAB II
Tabel 2.1. Komposisi kimia otot skeletal mamalia (persen basis berat segar) ... 11
Tabel 2.2. Terminologi selongsong sosis komersial .. 21

BAB III
Tabel 3.1. Komposisi kimia susu dari beberapa spesies mamalia (persen) 26
Table 3.2. Komposisi asam amino kasein susu sapi (persen residu/mol protein) .. 28
Tabel 3.3. Komponen-komponen asam lemak dari lemak susu ... 29
Table 3.4. Pengaruh bangsa terhadap komposisi kimia susu (persen) .. 33
Table 3.5. Komposisi susu beberapa spesies (persen) ... 35
Table 3.6. Kualitas kimia karamel susu .. 37
Tabel 3.7. Komposisi kimia dan pengembangan kerupuk susu pada perbedaan tepung dan dengan atau tanpa soda kue (%) ... 39
Tabel 3.7. Komposisi kimia es krim probiotik dengan atau tanpa substitusi ubi jalar ungu 40
Table 3.8. Komposisi kimia daging ... 40
Table 3.9. Komposisi kimia daging ... 41
Table 3.10. Komposisi kimia dadih ... 41

BAB IV
Tabel 4.1. Standar mutu telur asin (SNI-01-4277-1996) .. 53
<table>
<thead>
<tr>
<th>Gambar</th>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAB II</td>
<td></td>
</tr>
<tr>
<td>Gambar 2.1. Struktur dan karakteristik otot</td>
<td>6</td>
</tr>
<tr>
<td>Gambar 2.2. Fungsi sel otot</td>
<td>7</td>
</tr>
<tr>
<td>Gambar 2.3. Anatomi sarkomer</td>
<td>7</td>
</tr>
<tr>
<td>Gambar 2.4. Bakso</td>
<td>13</td>
</tr>
<tr>
<td>Gambar 2.5. Sop buntut</td>
<td>15</td>
</tr>
<tr>
<td>Gambar 2.6. Rendang daging</td>
<td>16</td>
</tr>
<tr>
<td>Gambar 2.7. Kare daging sapi</td>
<td>16</td>
</tr>
<tr>
<td>Gambar 2.8. Sate padang</td>
<td>18</td>
</tr>
<tr>
<td>BAB IV</td>
<td></td>
</tr>
<tr>
<td>Gambar 4.1. Penampang memanjang struktur telur</td>
<td>44</td>
</tr>
<tr>
<td>Gambar 4.2. Diagram penampang kerabang</td>
<td>44</td>
</tr>
<tr>
<td>Gambar 4.3. Lingkaran hijau kuning telur pada telur masak (hard cooked egg)</td>
<td>48</td>
</tr>
<tr>
<td>Gambar 4.4. Pengawetan telur tertutup</td>
<td>50</td>
</tr>
<tr>
<td>Gambar 4.5. Pengawetan terbuka atau isi telur</td>
<td>50</td>
</tr>
<tr>
<td>Gambar 4.6. Penampang kulit telur</td>
<td>51</td>
</tr>
<tr>
<td>Gambar 4.7. Bagan Pembuatan telur asin</td>
<td>52</td>
</tr>
<tr>
<td>Gambar 4.8. Pengawetan dengan perendaman atau immersion liquid</td>
<td>52</td>
</tr>
<tr>
<td>Gambar 4.9. Bagan pembuatan telur asin rasa jahe, cabe dan jeruk</td>
<td>54</td>
</tr>
<tr>
<td>Gambar 4.10. Bagan pembuatan telur ayam rasa bawang</td>
<td>54</td>
</tr>
<tr>
<td>Gambar 4.11. Bagan pembuatan telur ayam asin rasa bawang</td>
<td>56</td>
</tr>
<tr>
<td>Gambar 4.12. Pengawetan telur dengan perendaman larutan teh hitam</td>
<td>56</td>
</tr>
<tr>
<td>Gambar 4.13. Bagan pembuatan telur pindang</td>
<td>57</td>
</tr>
<tr>
<td>Gambar 4.14. Pembuatan telur pindang dengan daun jambu biji dan kulit bawang merah</td>
<td>58</td>
</tr>
<tr>
<td>Gambar 4.15. Bagan pembuatan keripik rendang putih telur</td>
<td>59</td>
</tr>
<tr>
<td>Gambar 4.16. Bagan pembuatan sosis telur</td>
<td>60</td>
</tr>
<tr>
<td>BAB V</td>
<td></td>
</tr>
<tr>
<td>Gambar 5.1. Pengaruh pengemasan vakum dan non vakum terhadap daya tahan total mikrobia dan Escherichia coli 0157.H7</td>
<td></td>
</tr>
</tbody>
</table>
Kontributor

Soeparno, Ir. PhD. Prof. (Editor),
Laboratorium Pangan Hasil Ternak Bagian Teknologi Hasil Ternak
Fakultas Peternakan UGM

Edi Suryanto, Ir. MSc. PhD.
Laboratorium Pangan Hasil Ternak Bagian Teknologi Hasil Ternak Fakultas
Peternakan UGM

Setiyono, Ir. SU. Dr.
Laboratorium Pangan Hasil Ternak Bagian Teknologi Hasil Ternak Fakultas
Peternakan UGM

Nurliyani, Ir. MP. Dr.
Laboratorium Pangan Hasil Ternak Bagian Teknologi Hasil Ternak
Fakultas Peternakan UGM

R.A.Rihamuti, Ir. MS.
Laboratorium Pangan Hasil Ternak Bagian Teknologi Hasil Ternak
Fakultas Peternakan UGM

Yuni Erwanto, Ir. MP. PhD.
Laboratorium Teknologi Hasil Hutan dan Lingkungan
Bagian Teknologi Hasil Ternak Fakultas Peternakan UGM

Suci Paramitasari Syahlani, Ir. MM.
Laboratorium Agrobisnis Peternakan
Bagian Sosial Ekonomi Peternakan
Fakultas Peternakan UGM

Soeparno, Ir. PhD. Prof.
Laboratorium Pangan Hasil Ternak Bagian Teknologi Hasil Ternak Fakultas
Peternakan UGM
Susu dan Produk Susu
Nurliyani dan Soeparno

Susu dan produk susu merupakan bagian vital dari pangan hasil ternak. Aspek-aspek susu dan produk susu yang disajikan dalam seksi ini meliputi kimia susu, terutama komposisi kimia, fisik susu, faktor-faktor yang mempengaruhi komposisi susu, prinsip teknologi prosesing susu, dan variasi produk susu lokal. Komposisi susu meliputi protein susu, lemak susu, laktosa, vitamin dan mineral dalam susu, enzim-enzim dalam susu, gas dalam susu, kolesterol, pigmen dalam susu, dan rasa dan bau susu. Fisik susu meliputi penampakan, densitas susu, titik běku susu, titik didih susu, dan pH dan keasaman susu.

Kimia Susu

<table>
<thead>
<tr>
<th>Spesies</th>
<th>Padatantotal</th>
<th>Lemak</th>
<th>Protein</th>
<th>Laktosa</th>
<th>Abu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manusia</td>
<td>12.2</td>
<td>3.8</td>
<td>1.0</td>
<td>7.0</td>
<td>0.2</td>
</tr>
<tr>
<td>Sapi</td>
<td>12.7</td>
<td>3.7</td>
<td>3.4</td>
<td>4.8</td>
<td>0.7</td>
</tr>
<tr>
<td>Kambing</td>
<td>12.3</td>
<td>4.5</td>
<td>2.9</td>
<td>4.1</td>
<td>0.8</td>
</tr>
<tr>
<td>Domba</td>
<td>19.3</td>
<td>7.4</td>
<td>4.5</td>
<td>4.8</td>
<td>1.0</td>
</tr>
<tr>
<td>Kuda</td>
<td>11.2</td>
<td>1.9</td>
<td>2.5</td>
<td>6.2</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Sumber: Fox and Sweeney (1998)

Total solid susu berkisar antara 10,5 – 14,5%, dan solid not fat (SNF)atau padatan non lemak sekitar 9%. Variasi komposisi kimia akan menyebabkan variasi sifat fisiknya. Variasi-variasi kandungan air, lemak, protein, laktosa, dan konstituen mineral dipengaruhi oleh banyak faktor (lihat: Faktor-faktor yang mempengaruhi komposisi kimia susu).

Protein susu

Susu sapi dan air susu ibu (ASI) mengandung berbagai protein dengan proporsi yang berbeda, terdiri atas dua kelompok utama yaitu protein kasein dan protein whey. Protein kasein adalah fosfoprotein yang dapat dipresipitasikan dari susu skim dengan penggasaman sampai pH 4,6 pada suhu 20°C.
Kasein memiliki empat komponen, yaitu αS1, αS2, β-, dan κ-kasein, sedangkan γ-kasein merupakan komponen minor dari kasein. Konsentrasi α-kasein dalam susu kira-kira adalah 38,6%, terdiri atas αS1-kasein 30,6%, dan αS2-kasein 8,0%. Konsentrasi β-kasein dalam susu kira-kira adalah 28,4%, β-kasein 2,4%, dan κ-kasein 10,1%, sedangkan α-laktalbumin 3,7%, β-laktoglobulin 9,8%, Bovine Serum Albumin (BSA) 1,2%, dan protein membran globula lemak 1,2% dari berat (Walstra et al., 1999).

Fraksi α-kasein mengandung lebih banyak residu bermuatan, dan lebih sedikit residu hidrofobik dibandingkan dengan β-kasein, sehingga solubilitas meningkat bila tersedia kalsium. Fraksi α-kasein memiliki sifat hidrofobik yang rendah, fleksibel, dan struktur acak, yang menyebabkan peningkatan ikatan protein intermolekular, dan membentuk film fleksibel dengan permeabilitas yang agak tinggi terhadap uap air, dan rendah terhadap oksigen.

Fraksi β-kasein adalah yang paling hidrofobik, sehingga fraksi ini dapat membentuk suatu film dengan permeabilitas yang rendah terhadap uap air. Ujung terminal N β-kasein adalah hidrofilik, oleh karenanya β-kasein dapat berfungsi sebagai surfaktan yang baik, dan mampu berinteraksi dengan bagian-bagian hidrofobik dan hidrofilik lain dari molekul-molekul lain (Jennes dan Patton, 1959).

Protein whey merupakan kelompok protein susu yang berada pada bagian supernat setelah kasein terpresipitasi pada pH 4,6 temperatur 20°C. Protein whey mengandung β-laktoglobulin, α-laktalbumin, bovine serum albumin (BSA), glikomakropeptida (GMP), imunoglobulin dan komponen-komponen minor lain termasuk laktoserin, laktoperoksida, dan protease-pepton atau lisozim (Lampert, 1975; Soeparno, 2007).

Disamping protein, susu mengandung substansi-substansi minor termasuk substansi-substansi non-protein nitrogen, seperti urea nitrogen, amino nitrogen, kreatinin, keratin, asam urat, adenin, dan guanin. Substansi-substansi minor dalam susu ini hanya berkisar antara 18 sampai 8 mg/100 ml (Jennes dan Patton, 1959).
Table 3.2. Komposisi asam amino kasein susu sapi (persen residu/mol protein)

<table>
<thead>
<tr>
<th>Asam-asam amino</th>
<th>Kasein susu</th>
<th>Asam-asam amino</th>
<th>Kasein susu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lisin</td>
<td>6.9</td>
<td>Alanin</td>
<td>4.4</td>
</tr>
<tr>
<td>Histidin</td>
<td>2.6</td>
<td>Sistein</td>
<td>0.3</td>
</tr>
<tr>
<td>Arginin</td>
<td>2.8</td>
<td>Valin</td>
<td>7.3</td>
</tr>
<tr>
<td>Asam aspartat</td>
<td>6.5</td>
<td>Metionin</td>
<td>2.5</td>
</tr>
<tr>
<td>Treonin</td>
<td>4.5</td>
<td>Isoleusin</td>
<td>5.2</td>
</tr>
<tr>
<td>Serin</td>
<td>6.4</td>
<td>Leusin</td>
<td>9.5</td>
</tr>
<tr>
<td>Asam glutamat</td>
<td>18.6</td>
<td>Tirosin</td>
<td>4.0</td>
</tr>
<tr>
<td>Prolin</td>
<td>10.9</td>
<td>Penlalanin</td>
<td>4.0</td>
</tr>
<tr>
<td>Glisin</td>
<td>2.9</td>
<td>Triptopan</td>
<td>0.8</td>
</tr>
</tbody>
</table>

Sumber: Gennadios et al. (2002)

Lemak susu

Semua lemak adalah milik substansi kimia yang disebut ester, yaitu komponen-komponen alkohol dan asam lemak. Lemak susu adalah suatu campuran ester-ester asam lemak yang berbeda yang disebut trigliserida, yaitu komponen-komponen alkohol dan asam-asam lemak. Asam-asam lemak bisa mencapai kira-kira 90% dari lemak susu.

Komposisi asam lemak menunjukkan variasi. Faktor utama yang mempengaruhi komposisi asam lemak dari lemak susu adalah faktor pakan. Lemak susu dapat dipengaruhi baik oleh sifat alami pakan maupun rancangan nutrisi. Peningkatan level asam-asam lemak tertentu dalam pakan dapat meningkatkan level asam-asam lemak tersebut dalam lemak susu.

Laktosa

Laktosa adalah suatu gula yang termasuk dalam grup komponen kimia organik yang disebut karbohidrat. Laktosa larut dalam air, terjadi sebagai larutan molekular dalam susu. Oleh karenanya, dalam pembuatan keju, sebagian besar laktosa tetap terlarut dalam whey. Laktosa tidak semanis gula-gula lain, kira-kira 30 kali kurang manis dari pada gula tebu. Laktosa diserang oleh enzim bakteri asam laktat. Bakteri-bakteri ini mengandung enzim yang disebut laktase, yang menyerang laktosa, memecah molekul-molekul laktosa menjadi glukosa dan galaktosa. Enzim-enzim lain dari bakteri asam laktat kemudian menyerang glukosa dan galaktosa, mengkonversikannya...
Tabel 3.3. Komponen-komponen asam lemak dari lemak susu

<table>
<thead>
<tr>
<th>Asam-asam lemak</th>
<th>Atom - atom karbon</th>
<th>Sapi</th>
<th>Kambing</th>
<th>Kerbau</th>
<th>Kuda</th>
<th>Manusia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asam butirat (Tetranoot)</td>
<td>4</td>
<td>3.57</td>
<td>3.0</td>
<td>5.8</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>Kaproaat (Heksanoaat)</td>
<td>6</td>
<td>2.22</td>
<td>2.5</td>
<td>0.6</td>
<td>0.9</td>
<td>0.1</td>
</tr>
<tr>
<td>Kaprilat (Oktanoaat)</td>
<td>8</td>
<td>1.06</td>
<td>2.8</td>
<td>0.9</td>
<td>25.5</td>
<td>0.3</td>
</tr>
<tr>
<td>Kaprat (Dekanoaat)</td>
<td>10</td>
<td>1.88</td>
<td>10.0</td>
<td>1.0</td>
<td>5.6</td>
<td>1.7</td>
</tr>
<tr>
<td>Laurat (Dodekanoaat)</td>
<td>12</td>
<td>2.96</td>
<td>6.0</td>
<td>1.6</td>
<td>7.0</td>
<td>5.8</td>
</tr>
<tr>
<td>Miristat (Tetradekanoaat)</td>
<td>14</td>
<td>11.20</td>
<td>12.3</td>
<td>9.0</td>
<td>16.1</td>
<td>8.6</td>
</tr>
<tr>
<td>Palmitat (Heksadekanoaat)</td>
<td>16</td>
<td>25.24</td>
<td>27.9</td>
<td>35.2</td>
<td>2.9</td>
<td>22.6</td>
</tr>
<tr>
<td>Stearat (Oktadekanoaat)</td>
<td>18</td>
<td>11.90</td>
<td>6.0</td>
<td>15.3</td>
<td>0.3</td>
<td>7.7</td>
</tr>
<tr>
<td>Arakhhidat (Eikosonoaat)</td>
<td>20</td>
<td>0.22</td>
<td>0.6</td>
<td>0.1</td>
<td>42.4</td>
<td>1.0</td>
</tr>
<tr>
<td>Oleat (Oktadesenoaat)</td>
<td>18</td>
<td>30.00</td>
<td>21.1</td>
<td>20.5</td>
<td>-</td>
<td>36.4</td>
</tr>
<tr>
<td>Linoleat (Oktadekadienoaat)</td>
<td>18</td>
<td>2.80</td>
<td>3.6</td>
<td>1.5</td>
<td>-</td>
<td>8.3</td>
</tr>
<tr>
<td>Lenolenat (Oktadekatrienoaat)</td>
<td>18</td>
<td>0.50</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Data dari sejumlah investigasi diloh oleh Lampert (1975)

Telah dijelaskan bahwa laktosa larut dalam air. Bentuk α-laktosa kurang larut daripada bentuk β-laktosa. Solubilitas α- dan β-laktosa dalam air meningkat dengan peningkatan temperatur. Pada temperature 25°C, kelarutan laktosa kira-kira adalah 18%. Pada temperatur 0°C (32°F), rasio β- terhadap α-laktosa adalah 1,65 – 1,0, dan bila temperatur dinaikkan menjadi 100°C (212°F), rasioβ- terhadap α-laktosa menjadi 1,33 – 1,0 (Eckles et al., 1980). Laktosa agak larut dalam etil alkohol atau alkohol-alkohol tertentu yang lain. Laktosa tidak larut dalam pelarut-pelarut organik yang lebih non polar, misalnya eter, kloroform dan bensin (Jennes dan Patton, 1959).
Laktosa bisa dibuat dari whey susu dengan melibatkan tahap-tahap dasar berikut: a) liming (agak sedikit asam, kira-kira 0,5% asam laktat atau pH 6,2) dan pemanasan (mendekati mendidih), b) filtrasi untuk memisahkan protein-protein yang menjendal, dan mineral teutama kalsium fosfat, c) evaporasi filtrat untuk memperoleh sirup laktosa konsentrasi, d) pendinginan dan kristalisasi sirup, e) pencucian kristal, dan f) pengeringan kristal. Produk yang diperoelh adalah hidrat α-laktosa. Produk bisa dimurnikan dengan rekristalisasi. Telah dijelaskan bahwa solubilitas β-laktosa lebih besar (kira-kira 7 kali lebih larut) daripada hidrat α-laktosa. Kristalisasi β-laktosa dapat dilakukan dengan mengkonsentrasi atau mengeringkan pada temperatur diatas 93,5°C. Proses awal purifikasi dan konsentrasi sama seperti proses untuk α-hidrat (Jennes dan Patton, 1959).

Laktosa bisa digunakan: a) sebagai ingredien pangan-bayan, b) dalam formulasi dan standardisasi farmaseutikal, tablet, dan pil, c) dalam substrat jamur untuk produksi penisilin, d) dalam produksi warma karamel, e) sebagai material biji untuk menginduksi pembentukan kristal pada produk-produk susu tertentu, f) dalam produksi sirup laktosa hidrolisis, dan g) preparasi derivatif laktosa tertentu (Jennes dan Patton, 1959).

Vitamin dan mineral susu

Vitamin adalah substansi organik yang terjadi dalam konsentrasi yang sangat sedikit dalam tanaman dan hewan. Vitamin termasuk esensial untuk proses-proses kehidupan normal. Susu mengandung banyak vitamin. Vitamin susu yang sangat dikenal adalah vitamin A, B1 (tiamin), B2 atau G riboflavin, B6 (piridoksin), asam nikotinat (niasin), asam pantotenat, vitamin C (asam askorbat), D, E (α-tokoferol), dan vitamin K. Sejumlah vitamine dalam susu dipengaruhi oleh pakan dan rancangan nutrisi (Eckles et al., 1987).

Enzim dalam susu

laktase, enzim pemecah pati, yaitu diastase, dan peroksida sebagai enzim pengoksida. Susu segar mengandung fosfatase. Pasteurisasi yang benar akan membuat enzim ini tidak aktif (Eckles et al., 1987).

Gas dalam susu

Kolesterol

Susu mengandung kolesterol dalam jumlah yang relatif sangat sedikit, yaitu sekitar 105 – 176 ppm. Kadar kolesterol susu berhubungan langsung dengan kadar lemak susu (Eckles et al., 1987).

Pigmen dalam susu

Pigmen susu yang larut dalam air, misalnya adalah riboflavin, sebelummnya disebut laktoflavin atau laktokrom. Enzim ini terjadi di dalam serum susu, atau *whey*, dan memberikan kontribusi warna hijau kekuningan pada komponen-komponen susu tersebut. Jumlah riboflavin dalam susu kira-kira adalah 0,05 – 0,1 persen (Eckles et al., 1987).

Rasa dan bau susu

Fisik Susu

Penampakan

Karacteristik fisik susu sangat kompleks, karena adanya variasi-variasi komposisi kimia susu. Penampakan susu yang tidak jernih (opak) adalah karena adanya suspensi partikel-partikel lemak, protein, dan mineral-mineral tertentu.
atau ke tiga. Bila peningkatan umur mempengaruhi sistem reproduksi ternak, penurunan persentase lemak bisa menjadi nyata.

Variasi musim

Pengaruh pakan

Variasi dari pemerahan ke pemerahan, dan lama waktu interval antara pemerahan

Periode laktasi

Periode laktasi adalah suatu dari saat pedet dilahirkan hingga sapi induk menghentikan memberi susu. Susu yang diproduksi oleh hewan sesaat setelah melahirkan dan selama tiga sampai sepuluh pemerahan disebut kolostrum. Komposisi kimia kolostrum berbeda dengan susu normal dalam hal kandungan air, gula, dan lemak yang lebih rendah, dan kasein, albumin, globulin, serta abu (mineral) yang lebih tinggi daripada susu normal. Kandungan globulin kolostrum bisa mencapai 12 – 13% lebih tinggi daripada susu normal. Komposisi rata-rata kolostrum adalah: padatan total 28,3%, lemak 3,37%, kasein 4,83%, albumin dan globulin 15,85%, laktosa 2,48%, dan abu 1,78% (Eckles *et al.*, 1987; Soeparno, 2007).

Kolostrum mempunyai warna kuning kemerahan, bau yang tidak normal, rasa yang pahit, sangat berlendir dan viskus, dan mempunyai relasi asam. Kolostrum juga mempunyai gravitas spesifik yang lebih tinggi, sebab kandungan padatan totalnya lebih tinggi daripada susu normal. Gravitas spesifik kolostrum kira-kira adalah 1,079 (Eckles
pengaruh spesies

Komposisi susu berbeda di antara spesies. Telah ditunjukkan bahwa susu manusia mengandung protein yang lebih rendah dibandingkan dengan susu sapi, kandungan lemak sedikit lebih rendah, tetapi kandungan laktosa lebih tinggi. Faktor genetik telah diketahui mempunyai pengaruh terhadap komposisi susu. Susu sapi mengandung air dalam jumlah yang kira-kira sama dengan susu domba, dan susu manusia, tetapi lebih tinggi daripada susu kambing, dan susu kerbau. Tabel 3.5 menyajikan komposisi susu dari spesies yang berbeda.

Penanganan susu biasanya dilakukan dalam jumlah besar, termasuk proses pemerahan dari sejumlah sapi. Penggabungan susu tersebut dapat mengurangi variasi komposisi. Perbedaan prinsip penggabungan susu dari berbagai sumber disebabkan oleh faktor musim atau temperatur lingkungan yang biasanya berkorelasi dengan periode laktasi, dan perbedaan wilayah yang berbeda dalam hal bangsa sapi dan pakan ternak.

<table>
<thead>
<tr>
<th>Spesies</th>
<th>Air</th>
<th>Lemak</th>
<th>Protein</th>
<th>Laktosa</th>
<th>Abu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manusia</td>
<td>88,30</td>
<td>3,11</td>
<td>1,19</td>
<td>7,18</td>
<td>0,21</td>
</tr>
<tr>
<td>Sapi</td>
<td>87,25</td>
<td>3,80</td>
<td>3,50</td>
<td>4,80</td>
<td>0,65</td>
</tr>
<tr>
<td>Kambing</td>
<td>87,88</td>
<td>3,82</td>
<td>3,21</td>
<td>4,54</td>
<td>0,55</td>
</tr>
<tr>
<td>Domba</td>
<td>80,82</td>
<td>6,86</td>
<td>6,52</td>
<td>4,91</td>
<td>0,89</td>
</tr>
<tr>
<td>Kerbau air</td>
<td>76,89</td>
<td>12,46</td>
<td>6,03</td>
<td>3,74</td>
<td>0,89</td>
</tr>
<tr>
<td>Babi</td>
<td>84,09</td>
<td>4,55</td>
<td>7,23</td>
<td>3,13</td>
<td>1,05</td>
</tr>
</tbody>
</table>

Data diolah dari beberapa sumber (Eckles et al., 1987)

Variasi besar dapat terjadi sebab susu mengalami perubahan setelah pemerahan. Susu bukan suatu sistem ekualibrium, bahkan susu bisa berubah jika berada pada kondisi yang sama dengan kondisi di dalam ambang. Kondisi ini membuat mempersulit cara membedakan antara yang alami dengan konstituen-konstituen lain.

Prinsip Teknologi Pengolahan Susu

Susu merupakan bahan mentah yang digunakan dalam pembuatan berbagai macam produk pangan. Susu proses bisa disimpan lebih lama. Teknik proses yang digunakan akan menentukan masa simpan (storage life) susu dan produk susu. Metode proses yang juga dapat mengubah properti bahan mentah dan produk yang dihasilkan (Anonimus, 2009³). Beberapa karakteristik khas industri persusuan adalah sebagai berikut:

a. susu adalah cairan yang homogen atau siap dihomogenkan. Kondisi ini berarti bahwa transportasi dan penyimpanan adalah sederhana dan sangat memfasilitasi aplikasi proses yang berkelanjutan. Properti susu bervariasi sesuai dengan sumbernya, musim, kondisi penyimpanan, dan cara penanganan, sehingga proses-proses tidak harus diadaptasikan dengan variasi properti susu

b. Susu sangat mudah rusak dan bisa berbeda antara susu mentah dan produk final.

Susu dan Produk Susu
Karakteristik ini memerlukan kontrol higienis dan kondisi penyimpanan yang ketat
c. Susu mentah bisa mengandung bakteri patogenik, dan sebagian bakteri dapat
tumbuh dengan baik dalam susu. Kondisi ini juga memerlukan kontrol higienis dan
proses-proses stabilitasi yang ketat
d. Susu mentah umumnya dikirim ke industri susu sepanjang tahun dalam jumlah
yang bervariasi (di beberapa wilayah, pengiriman kadang-kadang tidak kontinyu). Susu harus diproses secepatnya dalam beberapa hari, ini berarti bahwa suatu saat
kapasitas proses suatu industri bisa tidak terpenuhi sepanjang tahun
e. Susu mengandung sejumlah komponen yang dapat dipisah-pisahkan ke dalam
fraksi-fraksi dengan berbagai cara, misalnya krim dan susu skim, susu bubuk dan
air, atau curd (jendalan kasein) dan whey. Transformasi fisik dan fermentasi juga
dapat dilakukan, yang berarti bahwa bermacam-macam produk susu dapat dibuat
sesuai dengan keinginan
f. Disamping susu, sejumlah kecil bahan mentah dibutuhkan dalam pembuatan
produk-produk susu, tetapi konsumsi air dan energi bisa tinggi
g. Unit operasi yang sama sering digunakan dalam pembuatan bermacam-macam
produk susu, termasuk perlakuan panas, pendinginan, pemisahan krim, dan
homogenisasi

Hampir semua tahapan proses, atau unit operasional yang diaplikasikan dalam
prosesing pangan, juga diaplikasikan dalam industri susu. Tahap-tahap operasional
dapat dikelompokkan sebagai berikut:
a. transfer panas; pemanasan dan pendinginan
b. pencampuran/kominusi: pengadukan, atomisasi, homogenisasi, rekombinasi.
Homogenisasi dan rekombinasi dapat dianggap sebagai transformasi
c. Fase pemisahan: pemisahan skim, pemisahan bubuk susu dari pengeritingan udara,
bagian dari proses churning (dalam pembuatan mentega)
d. Pemisahan molekular: evaporasi, pengeritingan, proses-proses membran,
kristalisasi (dari air, laktosa, lemak susu)
e. Transformasi fisik: pembentukan gel (karena rennin atau asidifikasi susu), elemen-
elemen penting termasuk dalam pembuatan mentega, dan pembuatan es krim
f. transformasi mikrobial dan enzimatis: produksi produk-produk fermentasi,
pematangan keju
g. stabilisasi: pasteurisasi, steril, dingin, beku. Setidak-tidaknya, salah satu dari
operasi-operasi tersebut selalu diaplikasikan. Sebagian besar proses operasional
terutama dimaksudkan untuk menjamin keamanan pangan

Produk Susu Lokal

Susu segar dapat diolah menjadi beberapa produk olahan susu, yaitu menjadi
hasil olahan susu non fermentasi maupun hasil olahan susu fermentasi. Beberapa hasil
olah susu non fermentasi dibuat tanpa melalui proses fermentasi, contohnya: susu
pasteurisasi (termasuk susu UHT/ultra high tempertaure), susu sterilisasi, susu
kental, susu bubuk, mentega, dan es krim. Hasil olahan susu fermentasi dibuat melalui
proses fermentasi susu dengan menggunakan mikroorganisme (starter atau bibit), yang biasanya menghasilkan produk susu asam. Bibit yang digunakan dalam proses fermentasi akan menentukan jenis produk yang dihasilkan. Contoh hasil olahan susu fermentasi antara lain yoghurt, kefir, koumiss, keju peram, kish, susu acidophilus, eggurt, susu bulgaricus, dan lain-lain. Saat ini banyak dikembangkan hasil olahan susu probiotik maupun susu prebiotik dan susu sinbiotik untuk meningkatkan manfaat kesehatan.

Prebiotik adalah bahan pangan yang tidak terdigesti dan mampu memacu pertumbuhan probiotik karena sifat spesifiknya yang hanya mampu difermentasi oleh probiotik (Gibson and Fuller, 1998). Probiotik adalah mikroorganisme hidup tertentu dalam jumlah yang cukup mencapai usus kecil dalam bentuk aktif membawa manfaat yang menguntungkan bagi kesehatan. Sinbiotik adalah produk kombinasi probiotik dan prebiotik, secara sinergik menghasilkan pengaruh yang menguntungkan. Contoh mikroorganisme probiotik adalah strain dari genera Bifidobacterium, Enterococcus, Lactobacillus, Lactococcus, dan Streptococcus. Telah diketahui bahwa studi tentang produk-produk probiotik oleh genera Lactobacillus (L) dan Bifidobacterium (B) bisa ditemukan, misalnya: grup L. acidophilus dan spesiesnya L.acidophilus dan L. johnsonii; grup of L. casei, dan L. reuteri, spesies heterofermentatif Bifidobacterium spp. yang meliputi B.animalis, B.longum, B.lactis, B.infantis, and B.brev (diolah dari beberapa sumber; Soeparno, 2007).

Hasil olahan susu tradisional non fermentasi yang sudah ada di Indonesia, misalnya adalah karamel susu, dodol susu, kerupuk susu dan dangke, sedangkan hasil olahan susu fermentasi tradisional adalah dodhi.

Karamel susu

<table>
<thead>
<tr>
<th>Lama penyimpanan (minggu)</th>
<th>Susu segar (persen)</th>
<th>Lemak</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Air</td>
<td>Abu</td>
</tr>
<tr>
<td>0</td>
<td>9,43</td>
<td>2,17</td>
</tr>
<tr>
<td>2</td>
<td>10,12</td>
<td>2,09</td>
</tr>
<tr>
<td>4</td>
<td>10,61</td>
<td>1,83</td>
</tr>
<tr>
<td>6</td>
<td>11,27</td>
<td>1,80</td>
</tr>
<tr>
<td>8</td>
<td>9,74</td>
<td>2,05</td>
</tr>
</tbody>
</table>

Sumber: Abubakar dan Ilyas (2005)
dan emulsifier 0,3% menunjukkan kualitas yang bagus apabila sebagian MSNF (dari skim) diganti dengan 50% ubi jalar ungu. Kualitas es krim probiotik (ditambah *Lactobacillus acidophilus*), dengan atau tanpa substitusi ubi jalar ungu dapat dilihat pada Tabel 3.7.

Tabel 3.7. Komposisi kimia es krim probiotik dengan atau tanpa substitusi ubi jalar ungu

<table>
<thead>
<tr>
<th>Komposisi Es krim</th>
<th>Ubi jalar ungu (persen)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Air (%)</td>
<td>60,11</td>
</tr>
<tr>
<td>Lemak (%)</td>
<td>5,33</td>
</tr>
<tr>
<td>Protein (%)</td>
<td>4,42</td>
</tr>
<tr>
<td>Serat kasar (%)</td>
<td>0,00</td>
</tr>
<tr>
<td>Total L. Acidophilus CFU/ml</td>
<td>0,9x10^7</td>
</tr>
<tr>
<td>(setelah disimpan beku selama 30 hari)</td>
<td></td>
</tr>
</tbody>
</table>

Sumber: Airawati (2009)

Dangke

Nama Dangke berasal dari bahasa Belanda " Dank Je Well" yang artinya terima kasih. Dangke merupakan produk olahan susu kerbau atau susu sapi secara tradisional yang berasal dari Sulawesi Selatan, terutama kabupaten Enrekang. Dangke merupakan produk semacam keju tanpa pemeraman, tidak dikoagulasikan dengan renin tetapi dengan papain (getah pepaya).

Proses pembuatan dangke dimulai dengan pemanasan susu menggunakan api kecil sampai mendidih, kemudian ditambahkan koagulan getah pepaya sehingga menggumpal. Gumpalan dimasukkan dalam cetakan khusus yang terbuat dari tempurung kelapa (bagian bawah dilubangi) sambil ditekan, sehingga cairannya keluar. Konsentrasip papain atau getah pepaya yang dilarutkan air kira-kira setengah sendok makan untuk 5 liter susu, dan dapat dihasilkan 4 buah danke. Dangke yang masih panas dibungkus daun pisang, agar tahan lama ditaburi garam dan siap dipasarkannya.

Pemasaran dangke tidak hanya di daerah Sulawesi Selatan, tetapi bahkan sampai Kalimantan, Jakarta, Papua, dan Malaysia. Dangke biasanya dikonsumsi sebagai lauk pauk yang sebelumnya diiris tipis, kemudian digoreng atau dipanggang.

Komposisi kimia dangke disajikan pada tabel 3.8. Kandungan lemak, protein, dan mineral secara relatif tinggi, sehingga bergizi tinggi dan enak. Berdasarkan tabel tersebut dangke termasuk keju lunak (*soft cheese*), karena kadar airnya sesuai dengan kriteria keju lunak yaitu lebih besar dari 40%.

Tabel 3.8. Komposisi kimia dangke

<table>
<thead>
<tr>
<th>Komposisi</th>
<th>Persen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air</td>
<td>45,75</td>
</tr>
<tr>
<td>Lemak</td>
<td>32,81</td>
</tr>
<tr>
<td>Protein</td>
<td>17,20</td>
</tr>
<tr>
<td>Mineral</td>
<td>2,32</td>
</tr>
</tbody>
</table>

Sumber: (Anonimus, 2009)
Dali

<table>
<thead>
<tr>
<th>Komposisi</th>
<th>Persen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air</td>
<td>62,86</td>
</tr>
<tr>
<td>Lemak</td>
<td>23,25</td>
</tr>
<tr>
<td>Protein</td>
<td>11,51</td>
</tr>
<tr>
<td>Mineral</td>
<td>-</td>
</tr>
</tbody>
</table>

Tabel 3.9. Komposisi kimia dali

Sumber: Anonimus (2008)
http://www.wordpress.com

Tabel 3.10. Komposisi kimia dadih

<table>
<thead>
<tr>
<th>Komposisi</th>
<th>Persen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air</td>
<td>84,35</td>
</tr>
<tr>
<td>Protein</td>
<td>4,79-5,93</td>
</tr>
<tr>
<td>Lemak</td>
<td>5,42-7,05</td>
</tr>
<tr>
<td>Karbhidrat</td>
<td>3,34</td>
</tr>
<tr>
<td>Gula total</td>
<td>17,2</td>
</tr>
</tbody>
</table>

Dadih

Dadih merupakan produk susu fermentasi tradisional dari Sumatera Barat, namun dapat juga dijumpai di daerah Riau. Umumnya dadih dikonsumsi langsung bersama nasi setelah diberi irisan bawang merah dan cabe merah, atau dadih dicampurkan ke dalam minuman es bersama emping ketan, santan dan gula merah. Konsumen menyukai dadih yang berwarna putih, bertekstur lembut dengan aroma spesifik. Bagi penderita lactose intolerance, mengkonsumsi dadih merupakan salah satu alternatif untuk memperoleh manfaat susu.

Cara pembuatan dadih yang dilakukan secara tradisional belum ada standar, oleh karena itu kualitas dadih yang dihasilkan dari tiap daerah bervariasi. Kualitas dadih dipengaruhi oleh susu yang digunakan. Apabila dadih dibuat dari susu sapi, maka kandungan lemaknya lebih rendah yang berkisar 2,8%. Vitamin A dalam dadih sebesar 80 SI. Komposisi kimia dadih dapat dilihat pada Tabel 3.10.
Dadih mempunyai pH 3,4, rasa asam (keasaman 0,99%) dan terdapat 36 strain bakteri asam laktat yang telah diidentifikasi. Total bakteri asam laktat dalam dadih sebanyak 16,0 x 10⁶ CFU/ml. Salah satu probiotik dalam dadih berperan dalam pembentukan tekstur dan cita rasa. Bakteri yang dominan dijumpai pada dadih dari Bukit Tinggi dan Padang Panjang adalah Lactobacillus sp., Lactococcus sp. and Leuconostoc sp. Lactobacillus plantarum, Enterococcus faecium yang mempunyai potensi sebagai probiotik dengan rata-rata hidup yang baik pada pH rendah dan adanya lisis, dan waktu lag pendek dengan adanya 0,3% oksgal. Enterococcus faecium dan Lactobacillus plantarum mampu melekat pada lapisan mukus, sehingga secara signifikan menghambat adhesi Escherichia coli O157:H7. Enterococcus faecium bisa mengahambat virulensi Escherichia coli 0157:H7 dan Salmonella typhimurium oleh ko-agresi (co-aggregating) dengan patogen. Bakteri asam laktat dan produk turunannya membuat dadih memiliki manfaat kesehatan antara lain menyiembangkan mikroflora usus, menghambat pertumbuhan bakteri patogen penyebab diare, menurunkan terjadinya mutasi sel, menurunkan kadar kolesterol darah dan meningkatkan sistem pertahanan tubuh. Kandungan gizi dan manfaat kesehatan dadih menjadikan dadih sebagai produk pangan potensial untuk dikembangkan dalam industri susu.

Daftar Pustaka

Anonimus, 2009b. Deskripsi umum tentang dangke dan produk sejenis. Available at: muhridwanipbbab2.pdf

