Proceeding

The 2nd Asian-Australasian Dairy Goat Conference

April 25-27th, 2014
IPB International Convention Centre Bogor, Indonesia

THE ROLE OF DAIRY GOAT INDUSTRY IN FOOD SECURITY, SUSTAINABLE AGRICULTURE PRODUCTION, AND ECONOMIC COMMUNITIES

Organized by:
Faculty of Animal Science,
Bogor Agricultural University

Supported by:
LIST OF EDITORS

Editors:
Prof. Dr. Ir. Komang G. Wiryawan (Indonesia)
Dr. J. B. Liang (Malaysia)
Dr. C. Devendra (Malaysia)
Prof. J. Takahashi (Japan)
Dr. E. R. Orskov (UK)
Prof. Dr. Ir. Dewi Apri Astuti, MS (Indonesia)
Prof. Dr. Ir. Wasmen Manalu (Indonesia)
Dr. Anuraga Jayanegara, SPt. (Indonesia)
Ir. Anita S. Tjakradidjaja, MRur.Sc. (Indonesia)
Dr. Sri Suharti, SPt, MSi. (Indonesia)
Dr. Irma Isnafia Arief, SPt, MSi. (Indonesia)
Dr. Ir. Dwiera Evvyernie, MSc. (Indonesia)

Reviewers:
Prof. Dr. Ir. Komang G. Wiryawan (Indonesia)
Dr. J. B. Liang (Malaysia)
Dr. C. Devendra (Malaysia)
Prof. J. Takahashi (Japan)
Dr. E. R. Orskov (UK)
Prof. Dr. Ir. Dewi Apri Astuti, MS (Indonesia)
Prof. Dr. Ir. Wasmen Manalu (Indonesia)
Dr. Anuraga Jayanegara, SPt. (Indonesia)
Ir. Anita S. Tjakradidjaja, MRur.Sc. (Indonesia)
Dr. Sri Suharti, SPt, MSi. (Indonesia)
Dr. Irma Isnafia Arief, SPt, MSi. (Indonesia)
Dr. Ir. Dwiera Evvyernie, MSc. (Indonesia)
Prof. Dr. Ir. Toto Toharmat, MSc. (Indonesia)
Prof. Dr. Ir. Cece Sumantri, MAgr.Sc. (Indonesia)
Dr. Epi Taufik SPt, MVPH, MSi. (Indonesia)
Dr. Ir. Asep Sudarman, MRur.Sc. (Indonesia)
Dr.agr. Asep Gunawan, SPt, MSc. (Indonesia)
Prof. Dr. Ir. Panca Dewi MHK, MS. (Indonesia)
Ir. Lucia Cyrilla E. N. S. D., MSi. (Indonesia)
Dr. Jakaria, SPt, MSi. (Indonesia)
Dr. Ir. Afton Atabany, MSi. (Indonesia)
Dr. Ir. Lilis Khotijah, MSi. (Indonesia)
Prof. Dr. Erika B Laconi, MS. (Indonesia)

Layout Editor: Irma Nuranthy Purnama, S.Pt., MS.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of Editors</td>
<td>ii</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>iii</td>
</tr>
<tr>
<td>Foreword from Chairperson of Organizing Committee</td>
<td>x</td>
</tr>
<tr>
<td>Foreword from President of Asian-Australasian Dairy Goat Network</td>
<td>xii</td>
</tr>
<tr>
<td>(AADGN)</td>
<td></td>
</tr>
<tr>
<td>Remarks from Rector of Bogor Agricultural University</td>
<td>xiii</td>
</tr>
<tr>
<td>Keynote Speaker</td>
<td></td>
</tr>
<tr>
<td>Dairy Goat Production on Smallholder Agriculture in Indonesia. I-Ketut Sutama..</td>
<td>8</td>
</tr>
<tr>
<td>Invited Speaker</td>
<td></td>
</tr>
<tr>
<td>Gender Equity in Sustainable Animal-agriculture: Enhancing Empowerment and The Contribution of Women for Improved Livelihoods, Stable Households and Rural Growth. C. Devendra...</td>
<td>21</td>
</tr>
<tr>
<td>Dairy Goat Milk and Composition in So-called Developing Countries. Egil R. Ørskov, Kustantinah A...</td>
<td>37</td>
</tr>
<tr>
<td>Perspective of Methane Production by Dairy Goat Farm. J. Takahashi...</td>
<td>39</td>
</tr>
<tr>
<td>Breeding Programme for Dairy Goats in India. Aranganoor K. Thiruvenkadan, Ramanujam Rajendran...</td>
<td>42</td>
</tr>
<tr>
<td>Dairy Goat Production in Thailand. Sansak Nakavisut, Suwit Anothaisinthawee...</td>
<td>45</td>
</tr>
<tr>
<td>Dairy Goat in Malaysia. Shanmugavelu Sithambaram, Quaza Nizamuddin Hassan Nizam...</td>
<td>49</td>
</tr>
<tr>
<td>Goats in Japan— the Past, the Present and the Future. Shinichi Kobayashi...</td>
<td>53</td>
</tr>
<tr>
<td>Dairy Goat Production in the Philippines. Cesar C. Sevilla...</td>
<td>57</td>
</tr>
<tr>
<td>Dairy Goat Production in Iran. Seyed Mehdi Hoseini...</td>
<td>65</td>
</tr>
<tr>
<td>Housing Advancements in Dairy Goat Farming for Smallholders in the Tropics, Part II. N. Yogendran...</td>
<td>69</td>
</tr>
</tbody>
</table>
Present of Status Dairy Goat in Pakistan. *M. Fatah Ullah Khan, Faisal Ashfaq, Abdul Ghaffar* ... 72

Herbs, Minerals and Fermented Feed for Dairy Goats in Indonesia. *Toto Toharmat, Dewi Apri Astuti* ... 77

Oral Presentation

Breeding and Genetics

Role of MHC Genes as Useful Biomarkers in Dairy Beetal Goat Breed of Pakistan. *Atiya Yasmeen, Tanveer Hussain Tahir Yaqui, Abdul Wajid, Ali Ahmad Sheikh, Masroor Ellahi Babar* ... 96

Evaluation on Growth Rate of Anglo Nubian, Etawah Grade, and Anglo Nubian X Etawah Grade Kids. *Lisa Praharani* ... 102

Technology of Marker α1-Casein Gene for Selection Method in Etawah Grade Goats. *T. E. Susilorini, S. Maylinda* ... 105

Estimates of Genetic and Phenotypic Trend for Growth Traits in Etawah Grade Goat. *F. Hasan, Jakaria, A. Gunawan* ... 108

Comparison of Determination Methods of Sperm Acrosome in a Cold Shock Model of Caprine Semen. *Mushtaq Ahmad, Nasim Ahmad* ... 112

Biometric Evaluation of the Testis of Adult Male Goat (Capra-hircus). *Hamayun Khan, Mohammad Misri Rind, Ikhwan Khan, Muhammad Subhan Qureshi, Muhammad Saleem Khan* ... 115

Productive and Reproductive performance of Imported French Alpine Goats under Subtropical Conditions in Egypt. *Elsaid Oudah* ... 118

Effects of Prostaglandin Concentration on Estrous Percentage of Etawah Grade. *Umi Adiati, Lisa Praharani* ... 125

Individual Variation on the Sperm Freezing Capability of Etawah Grade. *Iis Arifiantini, W.M.M. Nally, Tati Susnawati, Emi Rochmiati* ... 128

Activities of Assistance Service as The Initial Program to Establish Village Breeding Center of Etawah Grade Goat at Samigaluh Kulon Prigo. *Yuni Surainindyah, Ristianto Utomo, Diah Maharani, Tri A. Kusumastuti, Rihastuti, Setyono* ... 131

Response and Characteristic of Estrous of Etawah Grade Goats after Different Routes of Prostaglandin Application. Mohamad A. Setiadi, Kadek D. Setiawan, Elvi D. Yunitasari

Feed and Nutrition

Nutrients Intake and Milk Composition of Lactating West African Dwarf Does Fed Varying Levels of Microbial Degraded Corncob Diets. Adebowale N. Fajemisin, Ayo Oluyede, Gladys A. Ibhaez, Olusola A. Olomunisomo, Adebowale N. Fajemisin

Milk Constituents of West African Dwarf Goats Fed Corncob Based Silage. Gladys A Ibhaez, Olusola A. Olomunisomo, Adebowale N. Fajemisin

The Growth Performance of Philippine Native Goats (Capra hircus Linn.) Fed Different Neutral Detergent Fiber Ratio from Forage and Concentrate. Dwiatmoko Nugroho, Sunarso, Cesar C. Sevilla, Amelia A. Angeles

Blood Biochemical Parameters of Shami Goats Fed Sorghum Stalk. Murtada B. M. Elimam

The Use of Coffee Husk Fermented with Pleurotus ostreatus as Feed Supplement Improved Haematological Properties in Etawah Dairy Goat Suffered from Subclinical Mastitis. Irma Badarina, Dwieraa Evyernie, Elis N. Herliyana, Latifah K. Darusman, Toto Toharmat

The Effects of Leucaena Leucocephala Added to Para Grass in Different Proportions to Form Mixed Diets on Mimosine, Di-hydroxypyridine (DHP) in Urine, Milk, Thyroid Hormones in Dairy Goats. Thongsuk Jetana, Sungworn Usawang, Sirima Thongrauy

A Review of Coffee Pulp and Outer Skin of Coffee as Goat Feed. Diah Asri Erowati

Nutritional Basis of Adaptation of Goats to Changing Climate in Pakistan. Ghulam Habib

Feed Intake, Daily Gain and Feed Conversion of Etawah Cross Bred Goat Fed Ration Containing Fermentated Rice Bran. Andi Murlina Tasse, D. Evvyernie, Rahman

Is Goat Milk Superior for Longevity and Sound Health? The Inside Happening Taurine Factor. R.C. Gupta, S.P. Tiwari

In Vitro Digestibility of Indigofera zollingeriana and Leucaena leucocephala Planted in Peatland. Arsyadi Ali, Luki Abdullah, Panca Dewi M. H. Karti, Muhammad A. Chozin

In Vitro Evaluation of Dates Fruit Waste as an Energy Source in Dairy Goat Ration. Endah Yuniarti, Dwieraa Evvyernie, Dewi Apri Astuti

The Effect of Dietary Barley Grain Substitution with Hydroponic Barley Grass on Performance of Saanen Dairy Goats. Reza Valizadeh, Sahere Hayati, Abbas A Naserian, Abdolmansor Tahmasebi

Effect of Grazing on Some Bioactive Compounds of Goat Milk. Ferenc Pajor, Péter Póti... 188

Pelletized Forage-based Ration for Lactating Goats. Edgar A. Orden, Emilio M. Cruz, Armando N. Espino, Ma. Excelsis M. Orden, Neal A. Del Rosario............. 190

Ruminal Fatty Acid Profiles of Leaves from Some Leguminous Tree Species as Incubated in an \textit{in Vitro} Fermentation System. Anuraga Jayanegara, Muhammad Ridla, Erika B. Laconi, Nahrowi... 193

Effect of Administration of Clove and Orange Peel Oils on Milk Yield and Composition in Dairy Goat. M. Nasir Rofiq, Murat Gorgulu.. 199

Effect of Glucose Concentration on the Production of \(\beta\)-glucan by \textit{Saccharomyces cerevisiae}. Laras Cempaka, I. Nyoman P. Aryantha... 202

Growth Performance of Taggar Female Kids as Affected by Type of Concentrate Rations Under Dry Land Farming in Western Sudan. Ibrahim Bushara, Murtada Elimam, Abdel Moneim M. Abu Nihhila, D.M. Mekki... 205

Development of Multi-Nutrient No Molasses Feed Supplement for Improving Milk Productivity on Early Lactation Dairy Goats. Suharyono, Nadia Litasova, Asih Kurniawati, Adiarto... 209

Locally Tree For Ettawa Crossbred Dairy Goat Feed. Asmah Hidayati, Imbang D. Rahayu, Sri Samssundari... 213

Unsaturated Fatty Acid Content of Milk from PE Goat Fed with Palm Oil Sludge Meal and Tea Waste Combination. Muhammad Arifin, Afton Attabany, Anita S. Tjakradidjaja... 216

Influence of Diets on Milk Production and Composition of Etawah Grade Does Reared in Mined Land Reclamation. Muhamad Baihaqi, Euis Widaningsih, Asnath M. Fuah... 219

Milk Production of Late Lactation Dairy Goat Fed PUFA-Diet Supplemented with Yeast and \textit{C. xanthorrhiza} Roxb. Endang Sulistyowati, Asep Sudarman, Komang G. Wiryawan, Toto Toharmat... 223

The Use of Cassava (\textit{Manihot esculenta}) Leaf Silage as Protein Source Feed on Intake, Digestibility and Milk Production of Etawah Crossbred Goat. Asep Sudarman, Novicha Sofriani, Yeni Widiawati... 227

Productivity of Ettawah Crossbreed Goat Suplemented with Yeast Probiotic R1 and R2. Teguh Wahyono, Irawan Sugoro... 230

Herbage Production of Brown Midrib (bmr) and Conventional Sorghum Fertilized with Different Level of Organic Fertilizer as Forage Source for Goat. Widhi Kurniawan, L. Abdullah, Panca D. M. H. Karti, Supriyanto... 233

Effects of Different Levels of Neutral Detergent Fiber in Diets on Feed Intake, Nutrient Digestibility and Rumen Parameters of Bach Thao Goat in The Mekong Delta of Vietnam. Nguyen Thi Kim Dong, Nguyen Van Thu................................. 237

Manure and Urea Fertilizer Application on Productivity of King Grass (Pennisetum purpuroides). In Susilawati, Liza Khairani, Eliza Octaviyani Perwata............................... 241

Performance of Dairy Goat Fed Diets Supplemented with Garlic Powder (Allium Sativum) and Organic Mineral. Caribu Hadi Prayitno, Yusuf Subagyo, Suwarsno............................... 244

Nutritional Quality and Milk Production of Complete Feed from Forage for Dairy Goats. Panca D. M. H. Karti, D.A. Astuti, A.M. Fuah, M. Baihaqi, H. Apriyani.... 248

Antioxidant as Feed Additive Given to Etawah Grade Bucks Kept in Different Micro-Climates Environment (26 versus 34 °C). Muhammad Winugroho, Yeni Widiawati, Tatan Kostaman... 251

Effect of Protein Level in Concentrate Diets on Progesterone Concentration in Etawah Grade Goat. Supriyati, Lisa Praharani, I Gusti Made Budiarsana, I-Ketut Sutama... 257

Nutrient Intake and Digestibility of Etawah Grade Goat Fed Diet Supplemented Multi-Nutrient No Molasses Feed Supplement. Asih Kurniawati, Vincentia Desi Pramudyastuti, Adiarto, Suharyono... 261

Dairy Goat Management

Milk Producing Ability of Saanen Does Under Intensive Management. Anneke Anggraeni.. 276

Comparison of Models for Describing the Lactation Curve of Saanen Goat in Thailand. Mongkol Thepparat, Sansak Nakavisut, Suwit Anothaisinthawee, Thunchira Thepparat.. 279

Recording Application for Etawa-Crossed Goat Herd Improvement: A Case Study in Samigaluh, Kulon Progo District. Dyah Maharani, Tety Hartatik, Yuni Suranindyah, Sumadi... 282

Health and Diseases

- **The Possibility of Protein A as a Virulence Factor of Staphylococcus aureus in Subclinical Mastitis in Goat.**
 - *Siti Gusti Ningrum, Wyanda Arnafia, I Wayan Teguh Wibawan*

- **Pathological Studies of Caseous Lymphadenitis in Small Ruminants.**
 - *Muhammad Younus, Ghulam Mustafa, Muti Ur Rehman, Afiab Anjum, Muhammad Raza Hameed, Iahtasham Khan*

Milk and Milk Product

- **Microbiological and Biochemical Changes during Ripening of Lyghvan-a Raw Ewe’s and Goats Milk Cheese from the Tabriz (Iran).**
 - *Parisa Rashtchi, Ali Bazmi, Hasn Moosavy, Elham Noormohamadi*

- **Investigation of the Microbial, Physicochemical and Sensory Properties of Traditional Yoghurt Produced from Milk of Goat and Ewe and Packaged in Tin Can during the Storage Period.**
 - *Sepide Eftekhari, Parisa Rashtchi, Mohamad Ehsani*

- **Chemical and Sensory Properties of Kefir Produced from Goat Milk and Extract Soybean.**
 - *Nurliyani, Eni Harmayani, Sunarti, Feny Prabawati*

- **Antihypertensive Activity of Lactic Acid Bacteria Fermented Goat Milk Casein on DOCA-Salt Induced Hypertensive Rats.**
 - *Masdiana Padaga, Aulanni’am*

- **Effect of Various Sources of Fat Ingredients on the Properties of Goat Milk Ice Cream.**
 - *Tosporn Namhong, Sanae Buasanit, Siriwan Suknikom*

- **Concentrated Yogurt Production from Etawah Grade Goat Milk Using Two Different Methods of Whey Removal.**
 - *Juni Sumarmono, Mardiati Sulistyowati, Soenarto*

- **Microbiological Study of Goat Milk Kefir with Different Kefir Grain Concentrations and pH Controls during Fermentation.**
 - *Triana Setyawardani, Agustinus H.D. Rahardjo, Mardiati Sulistyowati, Samsu Wasito, Juni Sumarmono*

- **Functional Properties of Yoghurt Goat Milk With Probiotic and Roselle (Hibiscus Sabdariffa) Extract.**
 - *Dewi Elfrida Sihombing, Irma Isnafia Arief, Sri Budiarti, Ria Putri Rahmadani*

Economic and Social Economic

- **Prospect of Dairy Goat Production for Small-Scale Enterprise in Payakumbuh West Sumatra.**
 - *Khalil, Reswati*

- **Enhancement of Goat Productivity through Micro Finance Banking in Mardan Pakistan.**
 - *Naushad Khan, Munir Khan, Hamayun Khan*

Poster Presentation

Correction Factors of Lactation Length and Lactation Period on Milk Yield in Saanen Goat. Anneke Anggraeni

Ruminal Fatty Acid Profiles of Leaves from Some Leguminous Tree Species as Incubated in an In Vitro Fermentation System. Anuraga Jayanegara, Muhammad Ridla, Erika B. Laconi, Nahrowi

High Quality Ration to Induce Milk Fat of Etawah Crossbread Goat. K. B. Satoto, K. G. Wiryawan, D. A. Astuti, L. Khotijah, D. M. Fassah, K. Komalasari

Index of Authors
List of Committees
Seminar Program
List of Participant
Acknowledgement
Foreword from Chairperson of Organizing Committee

Distinguished,

Director General of Livestock Services and Animal Health, Ministry of Agriculture, Republic of Indonesia, Ir Syukur Iwantoro, MS, MBA

Rector of Bogor Agricultural University, Prof Dr Heri Suhardianto

President of Asian-Australasian Dairy Goat Network, Dr JB Liang

Mayor of Bogor City, Dr Bima Arya

All participants of Asian-Australasian Dairy Goat Conference 2014

Good morning ladies and gentlemen, and Assalamualaikum wr wb.,

It is my pleasure to welcome you here for attending the Second Asian-Australasian Dairy Goat Conference at IPB International Convention Center, Bogor Indonesia. The theme of this conference is “The role of dairy goat industry in food security, sustainable agriculture production and economic community” which is organized by Bogor Agricultural University in collaboration with Asian Australasian Dairy Goat Network and Directorate General of Livestock Services and Animal Health, Ministry of Agriculture, Republic of Indonesia.

From the success of The First Asia Dairy Goat Conference on 9-12 April 2012 in Kuala Lumpur Malaysia, and to express the mission and the objective of Asian-Australasian Dairy Goat Network, it is necessary to continue the biannual dairy goat meeting in Bogor Indonesia. The primary objective of the second AADGC-2014 is to provide a platform for all stakeholders including researchers, academicians, policy makers, farmers, investors and other dairy industries to share experiences and networking to promote dairy goat farming in the Asian-Australasian region and beyond.

With saying Alhamdulillah, around 90 researchers from 16 countries around the world, 12 top universities and 4 research institutes in Indonesia have contributed some interesting topics to be discussed. The very important persons from 40 government livestock services officers in Indonesia, and more than 30 the best dairy goat farmers and companies from ASEAN counties are also with us here to make a forum group discussion in order to improve dairy goat production and markets. I have to stated here that all papers have been reviewed by the experienced international reviewers.

On behalf of the organizing committee we would like to welcome to all delegates from Malaysia, Thailand, India, Japan, Philippine, Vietnam, Iran, Pakistan, Australia, United Kingdom, Hungary, Egypt, Nigeria, Sudan and also from some provinces in Indonesia. To government livestock services officers and farmers from ASEAN countries and from east, middle and west
Java, and also some potential business companies, welcome and have a nice discussion. I hope this conference and network activities during 3 days will bring you new idea how to improve dairy goat for our lives and get more benefits for all participants.

We cannot make this event success without your contributions. In this occasion, I would like to express my great gratitude and thanks to FAO, AADGN, IPB, Directorate General of Livestock Services and Animal Health, Ministry of Agriculture, Republic of Indonesia, Ministry Coordinating Economic Affairs, Bank BRI, Mayor of Bogor City, PT Napindo, PT Chiel Jedang, PT Nutreco, and PT Yummi Indonesia that support and sponsor this conference.

Thank you very much to all VIP reviewers from international advisory and scientific committee, and also for hard working of all organizing committee.

Please enjoy the beauty of Bogor City with the legend of Bogor presidential palace and botanical garden.

Wassalamualaikum wr.wb.

Prof. Dr. Dewi Apri Astuti, MS
Chairperson
The 2nd AADGC 2014
Foreword from President of
Asian-Australasian Dairy Goat Network (AADGN)

25 April 2014

Ladies and Gentlemen,

The Asian-Australasian Dairy Goat Network (AADGN) was formed by a group of researchers and producers with common interest in dairy goat production during the First Asian Dairy Goat Conference held in Kuala Lumpur, Malaysia in April 2012. The main objective of the network is to facilitate contact among scientists, extension workers, farmers and other stakeholders in the dairy goat industry. In addition, the network hopes to enhance information exchange, provide technical support, and promote dairy goat farming in Asian-Australasian countries and beyond. The secretariat of the network in currently located at the Institute of Tropical Agriculture, Universiti Putra Malaysia (http://aadgn.upm.edu.my/aadgn/) and technically supported by an International Steering Committee and representatives from partner countries, currently made up of Australia, China, India, Indonesia, Iran, Iraq, Japan, Malaysia, Pakistan, the Philippines, Thailand and Vietnam.

One of the activities of AADGN is to organize regular conferences focusing on all aspects of dairy goat research and farming. On behalf of AADGN, I congratulate the Organizing Committee, chaired by Professor Dewi Apri Astuti, for successfully organized the AADGC2014. I was informed that one of the highlights of this conference is the active participation of local dairy goat farmers and producers. It is often reported that the robustness of goats to produce in harsh climatic environment with low quality roughages plays a vital role in food security and poverty alleviation in smallholder farmers in Asia and recently, there is also a growing interest in dairy goat farming as business enterprise in South-east Asia countries including Indonesia to meet the rapid increased demands for goats milk and its products. I trust this conference will provide a good opportunity for exchange of information and experience between the researchers and producers.

Yours sincerely

DR JUAN BOO LIANG
President AADGN
Assalamu’alaikum warahmatullaahi wabarakatuhu,

A very pleasant and good morning to everyone, thank you very much for joining us at the 2nd Asian-Australasian Dairy Goat Conference (AADGC) 2014. I bid you a very warm welcome to Bogor Agricultural University (IPB) as well as to Bogor City, West Java Province.

I was informed that FAO joined with the University Putra Malaysia (UPM) and the International Dairy Federation (IDF) have organized the First Asia Dairy Goat Conference in Kuala Lumpur, Malaysia from 9 to 12 April 2012. At the same time the Asian-Australasian Dairy Goat Network was established. That network is one of the successful indicators of the first conference apart from its important conclusions and recommendations. That conference has also recommended Indonesia to be the host of the Second Asian-Australasian Dairy Goat Conference (AADGC) 2014 with Prof. Dr. Dewi Apri Astuti, one of IPB professors from Faculty of Animal Science to be the country coordinator. We are indeed honored to have you now here with us at IPB. We have about 150 participants from 15 countries gathered here today, making our conference a truly international one.

According to FAO Statistics (2012), Indonesia is ranked 6th in Asia and 10th in the world for total goat population. FAO also reported that Indonesia produced 282,000 ton of fresh goat milk in 2012. Yet, we have no valid data on the number of dairy goat population among the total goat population. Dairy goat farming in Indonesia has been growing fast since about 10 years ago.
The development of dairy goat farming in our country is unique, because it started from community initiative and spread across the nation through their network. The increasing demand of milk and milk products is likely one of the driving force for dairy goat farmer to develop.

If we take our national population as denominator, our milk consumption per capita per year is still very low, it is only 12 liter/capita/year. However, the consumption level in big cities is quite high, that’s why our milk and milk products demand is increasing about 8% per year. Although the major portion of the demand is from cow milk, goat milk and milk products demand is also increase year by year.

As the present conference theme is “The Role of Dairy Goat Industry in Food Security, Sustainable Agriculture Production and Economic Community” it is imperative to discuss alternative solutions to the above challenges by all participants as you are coming from different backgrounds. We have with us today representatives from research centers, universities, businessmen, government officers, students, farmers, and other interested persons. The conference will be more interesting as the organizing committee has set up special session for panel discussion between and among dairy goat farmers, local government livestock services officers, businessman and representative from Directorate General of Livestock and Animal Health, apart from scientific session.

I would like to take this opportunity to express my gratitude the Local Organizing Committee, chaired by Professor Dewi Apri Astuti, and the Dean of Faculty of Animal Science, for their hard work and effort in planning and coordinating this event. I would also like to thank the Directorate General of Livestock and Animal Health, Ministry of Agriculture Republic of Indonesia, Asian-Australasian Dairy Goat Network (AADGN), Food and Agriculture Organization (FAO-RAP), Mayor of Bogor City and Indonesia Association for Sheep and Goat Farmers for their support in making this conference possible.

The challenges made by the Conference are significant, but I am confident that you will succeed in your objectives. I wish you a very pleasant stay here in the IPB and in Bogor, and a productive and successful meeting.

By saying “Bismillaahirrahmaanirraahim…” I declare the Conference open.

Thank you and Wassalamu’alaikum Warahmatullaahi Wabarakaatuhu.

PROF. DR. IR. HERRY SUHARDIYANTO, MSc.
RECTOR, BOGOR AGRICULTURAL UNIVERSITY
Chemical and Sensory Properties of Kefir Produced from Goat milk and Extract Soybean

Nurliyani1*, Eni Harmayani2, Sunarti3, Feny Prabawati1

1 Department of Animal Product Technology, Faculty of Animal Science, Gadjah Mada University, Yogyakarta 55281, Indonesia
2 Department of Food Technology and Agricultural Products, Faculty of Agricultural Technology, Gadjah Mada University, Yogyakarta 55281, Indonesia
3 Department of Biochemistry, Faculty of Medicine, Gadjah Mada University, Yogyakarta 55281, Indonesia
*Corresponding author: nurliyani@yahoo.com

Abstract This study was to investigate the effect of combining goat milk and extract soybean on the chemical and sensory qualities of kefir. Kefir was divided into 5 groups, produced from goat and extract soybean mixtures (100:0, 75:25, 50:50, 25:75, 0:100). The chemical analysis of kefir include moisture, fat, protein, ash and carbohydrate content, whereas the sensory properties include aroma, taste, effervescence, sourness, texture and acceptability. The chemical data was analyzed by one way ANOVA, whereas the data of sensory properties was analyzed by non-parametric Kruskal-Wallis method. The total solid of all kefir made from goat milk and extract soybean mixture was lower (P<0.01) than goat milk kefir. Carbohydrate of kefir made from goat milk and extract soybean mixture (75:25, 50:50) was lower (P<0.01) than goat milk kefir (100:0) or extract soybean kefir (0:100). While, the fat content of kefir made from goat milk and extract soybean mixture (50:50, 25:75) was lower than 100:0 or 75:25. There was no effect of the goat milk and extract soybean ratio in kefir on the protein and ash content. Extract soybean could affect the aroma and acceptability, but had no effect on taste, effervescence, sourness and texture of kefir. In conclusion, based on chemical composition, sensory quality and economic consideration, the best composite of kefir was obtained from the ratio of goat milk and extract soybean 50:50.

Keywords Chemical composition, Sensory quality, Goat milk, Extract soybean, Kefir

1. Introduction

Kefir is a acidic, mid alcoholic, effervescent fermented drink from the Caucasian mountains and has become popular in many European countries [1],[2]. Goat milk has been recommended for children, elderly and convalescent persons due its good nutritional value, good digestibility and acceptability, and a low allergenic potential. However, it cannot be recommended to every child allergic to cow's milk, because in some cases, serious threat to life can also occur with goat milk [3]. Soy milk (and its products) could be an important resource for combating hunger and malnutrition in many developing countries [4]. However, soy milk and other soy beverages are often characterized as having unbalanced “beany” flavors and chalky mouthfeel. Therefore, formulation changes that enhance the overall flavor and textural characteristics of soy beverages may be necessary to further increase soy consumption [5]. The composition of kefir depends on the source and the fat content of milk, the composition of grains or cultures and the technological process of kefir [6]. However, the type of milk had greater influence on product characteristics and sensory profile than that of kefir starter cultures and their population development [7],[8]. To produce kefir from goat and soy milk mixture in developing country, dairy goat farming which is easier than dairy cows. This study investigated the effect
of combining goat milk and soymilk on the chemical and sensory qualities of kefir produced using Indonesian kefir grains.

2. Materials and Methods

Extract soybean was prepared according to [9], while production of kefir according to [8]. Kefir were divided into 5 groups with different ratio of goat milk and extract soybean (100:0, 75:25, 50:50, 25:75, 0:100), using 3 replications. Kefir samples were analyzed of chemical composition [10] and sensory evaluation. All kefir samples were evaluated by 10 semi-trained panelists according to [11]. Chemical of kefir was analyzed statistically by one way ANOVA, whereas sensory quality was analyzed by non-parametric according to Kruskal-Wallis method.

3. Results and Discussions

The chemical composition of goat milk, extract soybean and kefir produced by goat milk, extract soybean and combination of goat milk and extract soybean given in Table 1.

Table 1. The average of chemical composition of goat milk, extract soybean and kefir made from goat milk and extract soybean mixtures

<table>
<thead>
<tr>
<th>Chemical composition</th>
<th>Goat milk</th>
<th>Extract soybean</th>
<th>Kefir 100:0</th>
<th>Kefir 75:25</th>
<th>Kefir 50:50</th>
<th>Kefir 25:75</th>
<th>Kefir 0:100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moisture %</td>
<td>86.94a</td>
<td>90.59b</td>
<td>87.28a</td>
<td>89.78b</td>
<td>90.79b</td>
<td>90.48b</td>
<td>92.91c</td>
</tr>
<tr>
<td>Total solid</td>
<td>13.06a</td>
<td>9.41b</td>
<td>12.72a</td>
<td>10.22b</td>
<td>9.21b</td>
<td>9.52b</td>
<td>7.09c</td>
</tr>
<tr>
<td>Fat %</td>
<td>3.52c</td>
<td>0.73a</td>
<td>3.33c</td>
<td>2.88c</td>
<td>2.13b</td>
<td>1.70b</td>
<td>1.32a</td>
</tr>
<tr>
<td>Protein %</td>
<td>3.28a</td>
<td>3.01a</td>
<td>2.96a</td>
<td>2.98a</td>
<td>3.19a</td>
<td>3.15a</td>
<td>2.82a</td>
</tr>
<tr>
<td>Ash %</td>
<td>0.66a</td>
<td>0.40a</td>
<td>0.51a</td>
<td>0.57a</td>
<td>0.52a</td>
<td>0.40a</td>
<td>0.42a</td>
</tr>
<tr>
<td>Carbohydrate %</td>
<td>5.59d</td>
<td>5.26cd</td>
<td>5.90d</td>
<td>3.80a</td>
<td>3.36a</td>
<td>4.25bd</td>
<td>2.51a</td>
</tr>
</tbody>
</table>

The different letters in the same row indicates significantly different (P<0.01).

According to [12], protein and fat contents of kefir product were 2.7% and less than 10%, respectively. In the previous study by [7], the chemical composition of bovine, caprine and ovine milk kefir ranged from 10.6–14.9% for total solids, 2.9–6.4% for crude protein, 3.8–4.7% for carbohydrate, and 7–11% for ash. The other study showed that chemical composition of goat milk kefir was 2.96% for protein, 3.3% for fat and 2.45 for lactose by using goat milk containing 3.02% protein, 3.8% fat and 3.29% lactose [13]. Total solid, protein, carbohydrate and ash of goat milk were 13.0%, 3.6%, 4.5% and 0.8%, respectively [8]. According to [4], combining cow milk with extract soybean increased the total solids, protein, ash, fat and carbohydrate contents of the yoghurt.

Table 2 gives the sensory quality analysis results for the samples. The score of taste, effervescence, sourness and texture of kefir samples were not significantly different. Similarly, aroma of kefir combination of goat and extract soybean was not significantly different.
Table 2. Sensory quality of kefir made from goat and extract soybean

<table>
<thead>
<tr>
<th>Sensory Quality</th>
<th>Kefir 100:0</th>
<th>75:25</th>
<th>50:50</th>
<th>25:75</th>
<th>0:100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aroma</td>
<td>3.80 a</td>
<td>3.50a</td>
<td>3.10ab</td>
<td>2.90ab</td>
<td>2.40b</td>
</tr>
<tr>
<td>Taste</td>
<td>2.80 a</td>
<td>2.30a</td>
<td>2.10a</td>
<td>1.90a</td>
<td>1.90a</td>
</tr>
<tr>
<td>Effervescence</td>
<td>3.00 a</td>
<td>2.60a</td>
<td>2.50a</td>
<td>2.30a</td>
<td>2.10a</td>
</tr>
<tr>
<td>Surriness</td>
<td>3.20 a</td>
<td>3.30a</td>
<td>2.90a</td>
<td>3.00a</td>
<td>2.20a</td>
</tr>
<tr>
<td>Texture</td>
<td>3.50 a</td>
<td>3.30a</td>
<td>3.40a</td>
<td>3.40a</td>
<td>2.70a</td>
</tr>
<tr>
<td>Acceptability</td>
<td>2.50 b</td>
<td>2.00ab</td>
<td>1.80a</td>
<td>1.90ab</td>
<td>1.40a</td>
</tr>
</tbody>
</table>

The different letter in the same row indicates significantly different (P<0.05)

Score of goat milk kefir (100:0) was higher than kefir made from 50% goat milk and 50% extract soybean (50:50) or soy milk kefir (0:100), since the extract soybean had a beany flavor [5]. Therefore, can suggest using of other natural raw materials like muesli or fruits, which can mask the unpleasant soy taste [14]. This study similar to the yoghurt study by [4], that yoghurt from cow milk premixes was most preferred, while that from plain extract soybean was least accepted. Addition of cow milk to extract soybean significantly improved the sensory attributes of yoghurt produced from extract soybean.

4. Conclusion

Based on chemical composition and sensory quality, the best of kefir was obtained from the ratio of goat milk and extract soybean 50:50. In addition, based on economic considerations to produce kefir with a good nutritional value but economically affordable, this kefir is a good ratio for nutrition improvement, especially in developing countries that many cases of malnutrition.

5. References

[8] H. Yaman, M. Elmali, U. Kambe. Observation of lactic acid bacteria and yeast populations during fermentation and cold storage in cow’s, ewe’s and goat’s milk kefirs. Kafkas Unv Vet Fak Derg,