The 6th ISTAP International Seminar on Tropical Animal Production

“Integrated Approach in Developing Sustainable Tropical Animal Production”

PROCEEDINGS

October 20-22, 2015
Yogyakarta Indonesia

ISBN: 978-979-1215-26-8

Published by:
Faculty of Animal Science, Universitas Gadjah Mada Yogyakarta, Indonesia, 2015
Editor-in-Chief

Cuk Tri Noviandi
( Universitas Gadjah Mada, Indonesia)

Editorial Board

Subur Priyono Sasmito Budhi (Universitas Gadjah Mada, Indonesia)
Zaenal Bachruddin (Universitas Gadjah Mada, Indonesia)
Ristianto Utomo (Universitas Gadjah Mada, Indonesia)
Widodo (Universitas Gadjah Mada, Indonesia)
Soeparno (Universitas Gadjah Mada, Indonesia)
Yuny Erwanto (Universitas Gadjah Mada, Indonesia)
Adiarto (Universitas Gadjah Mada, Indonesia)
Ismaya (Universitas Gadjah Mada, Indonesia)
Tety Hartatik (Universitas Gadjah Mada, Indonesia)
Wihandoyo (Universitas Gadjah Mada, Indonesia)
Endang Baliarti (Universitas Gadjah Mada, Indonesia)
Krishna Agung Santosa (Universitas Gadjah Mada, Indonesia)
Sudi Nurtini (Universitas Gadjah Mada, Indonesia)
Budi Guntoro (Universitas Gadjah Mada, Indonesia)
Nanung Danar Dono (Universitas Gadjah Mada, Indonesia)
Zuprizal (Universitas Gadjah Mada, Indonesia)
Keshav L. Maharjan (Hiroshima University, Japan)
Henning Otte Hansen (University of Copenhagen, Denmark)
Yukinori Yoshimura (Hiroshima University, Japan)
Allen Young (Utah State University, USA)
Yanin Opatpatanakit (Maejo University, Thailand)

Editorial Staff

Rima Amalia EW, Prisilia Putri S, Miftahush S Haq, Septi Mulatmi,
Aditya Alqamal, Riyan Nugroho A, Pradiptya AH, Satyaguna R,
Zefanya AG, Bagas Pamungkas
PREFACE

On behalf of Faculty of Animal Science, Universitas Gadjah Mada, I am pleased to present you the 6th International Seminar on Tropical Animal Production (ISTAP) which is held on October 20 – 22, 2015 at Auditorium drh. Soepardjo, Faculty of Animal Science UGM, Yogyakarta. Under the main theme “Integrated Approach in Developing Sustainable Tropical Animal Production”, we expect that information and ideas on animal production systems in the tropics and its related problems will be shared among participants, thus we can elaborate an integrated approach in developing sustainable tropical animal production. I believe, this can be achieved since more than 250 animal scientists, researchers, students, and producers from more than 15 countries join this seminar.

In this moment, I have to address my great thanks to all people who have contributed for the success of this seminar. First, to all participants, thank you for your contributions, time, and efforts in participating in all sessions in this seminar. We also would like to extend our gratitude to the reviewers and editors for dedicate their expertise and precious time in reviewing and editing the papers. I deeply appreciate the hard work of all members of the Steering Committee, Organizing Committee, and students of Faculty of Animal Science UGM for making this seminar achieved a great success!

I hope all of you enjoy the seminar and Jogja as well!

Dr. Cuk Tri Noviandi

Editor in Chief
REPORT FROM ORGANIZING COMMITTEE

Dear all of the scientists, delegates, participants, ladies and gentlemen,

Praise be to The Almighty for His Merciful and Beneficent to raise up this memorable moment for all of the scientists and delegates from all over the world who were interested in Animal Science field to meet up together.

On behalf of all the members of Board Committee, it is my great pleasure and honor to welcome all of you and impress thankful, and present a high appreciation for your participation in joining the 6th ISTAP in Yogyakarta, one of the Special Region in Indonesia where culture and tradition live in harmony with the modern nuance and educational spirit makes it a beautiful venue of this seminar.

During this event, we have distinguished scientists from all over the world to present plenary papers Livestock Management, Production, and Environment; Feed, Land, and Landscape for Sustainable Animal Production; Livestock Industry and Technology; Economics, Social, and Culture in Livestock Development; and Special issue on Halal Food, Safety and Regulation. It is noted that around 200 scientists as well as livestock producers, companies, graduate and postgraduate students from 15 countries attend the seminar; and more than 160 research papers will be presented. We can see great enthusiasm of all the scientists to solve livestock problems as well as to share valuable information and knowledge for human prosperity all over the world.

The 6th ISTAP Program consists of scientific and technical programs as well as social and cultural activities. The scientific and technical programs offer 4 plenary sessions, field trip, and many scientific sessions (both oral and poster presentation). The social and cultural programs of the 6th ISTAP are very important as the scientific and technical programs since the promotion of friendship and future scientific cooperation are also central to this seminar. Opening Ceremony offers you the Seminar Program a glance. Participants will attend a warm invitation from Dean Faculty of Animal Science UGM in a Welcome Dinner that will give you the most memorable moment to attend. Field trip activity offers a wonderful sightseeing to the most spectacular natural landmark in Yogyakarta, Merapi Lava Tour and Ulen Sentalu Museum. We do hope that you will not miss any of these wonderful opportunities.

Closing Ceremony will be held on October 22nd, 2015, immediately after the last session of presentation. The 6th ISTAP award will be announced for some participant as an appreciation for their valuable research.

Finally, on behalf of 6th ISTAP Committee, I wish all of the participants having a great achievement of success and fulfill the expectation as well as enjoying the interaction with all scientists participating in the seminar.

High appreciation I may acknowledge to the Rector of Universitas Gadjah Mada and Dean Faculty of Animal Science UGM, who have concerned to facilitate the seminar site host.

Special thank to the Steering Committee, Scientific Committee, Reviewers and Editorial Boards for their great contribution to make the seminar successfully organized.

Terima kasih (Thank you).
Sincerely Yours,

Prof. I Gede Suparta Budisatria, Ph.D
Chairman
The Organizing Committee of the 6th ISTAP
WELCOME ADDRESS

Selamat pagi (Good morning)

Dear Rector of Universitas Gadjah Mada, all of Invited Speakers, honorable guests, all of delegates, participants, distinguished guests, Ladies and Gentlemen Attendants of The 6th ISTAP,

It is my great pleasure and honor to extend a warm welcome to all of you at The 6th International Seminar on Tropical Animal Production, which be held on October 20 – 22, 2015 at Auditorium drh. Soepardjo, Universitas Gadjah Mada, Yogyakarta Indonesia. This seminar is proudly organized by Faculty of Animal Science Universitas Gadjah Mada.

The contribution of this seminar to the development of national food security is truly significant for introducing of new scientific knowledge and equipments that is much needed in Indonesia to maintain a safe and secure environment and to look at more effective ways to meet future challenges. We can see great enthusiasm of the entire participant to present their latest research as well as to share valuable information and knowledge for human prosperity all over the world.

In these 3 days of seminar, we have invited some Plenary Speakers and Invited Papers who are qualified as scientists and bureaucrats in animal science field to share their valuable information and knowledge. Other participants can deliver their precious research through oral and poster presentations.

Finally, on behalf of Faculty of Animal Science, we would like to extend our sincere gratitude to the Minister of Rural, Rural Development, and Transmigration, Republic of Indonesia, Mr. Marwan Jafar, for his generosity to be with us here to give Keynote Speech. Then, it is our great honor and pleasure to have qualified scientists and bureaucrats as Plenary Speakers and Invited Papers to share their valuable knowledge during the plenary and concurrent sessions. Moreover, special thank you is for the Steering Committee, Scientific Committee, Reviewers and Editorial Boards for their great contribution to make the seminar a great success. Also, we would like to congratulate and deliver high appreciation to the Organizing Committee as the organizer for their great contribution and generous efforts to make the seminar successfully organized.

And to all of the participants, I hope that this seminar will always success and bring some acknowledgement for all of us. Also, I wish all of the participants having a great achievement of success and fulfill the expectation as well as enjoying the interaction with all participants.

With all of our hospitality, we will try our best to make your brief visit to our country become a wonderful and memorable moments. We are looking forward to meeting you all in the future event.

Wish you all a very pleasant and most enjoyable stay in Yogyakarta, Indonesia, beside you scientific journeys.

Terima kasih (Thank you).

Sincerely Yours,
Prof. Dr. Ali Agus
Dean Faculty of Animal Science UGM
OPENING REMARKS

Dear all of Scientists, distinguished guests, delegates, participants, Ladies and Gentlemen,

On behalf of Universitas Gadjah Mada, I am happy to welcome you and present a high appreciation for your participation in joining the 6th International Seminar on Tropical Animal Production hosted by the Faculty of Animal Science UGM in Yogyakarta from 20 – 22 October 2015.

Under the theme of “Integrated Approaches in Developing Sustainable Tropical Animal Production”, we do hope that this seminar concludes with shared ideas and best practices, technology, and global networks that are required to increase animal production. The increase of animal production as one source of food is crucial to feed the world given that the population is expected to increase from 6 billion to about 8.3 billion in 2030. According to FAO (2008, 2009), the consumption of animal food increased from 10 kg/per annum in 1960, 26 kg/per annum in 200, and it is expected to be 37 kg/per annum. Animal production is an integral part of food production and contributing for the quality of human food supply. Animal and agricultural production is an important component in the integrated farming systems in developing countries as this produces high quality foods, provides job opportunities in rural areas, as well as enriching livelihood.

As a tropical country with high animal biodiversity, Indonesia and other tropical countries, have a variety number of indigenous and local animal genetic resources and germ plasm. This variety of animal germ plasm could be explored and developed not only for animal and food production but also for animal conservation. Apart from being exploited as food resources, it is therefore important to consider animal conservation. Conservation will protect the genetic potency of local bred and their family, and the domesticated animal bred, and this would secure our future food resources.

In these 3 days of seminar, we believe those aforementioned issues will be discussed, and technical solution as well as recommendation will be provided to solve the existing problems in tropical animal production.

Finally, on behalf of Universitas Gadjah Mada, we would like to congratulate and thanks to the Faculty of Animal Science UGM as the organizer for their great efforts to make the seminar successfully organized. To all of participants, I wish all of you have a great discussion and interaction with other scientists participating in the seminar as well as enjoying your time in Yogyakarta.

Thank you

Prof. Ir. Dwikorita Karnawati, M.Sc., Ph.D.
Rector of Universitas Gadjah Mada
# LIST OF CONTENTS

PREFACE .................................................................................................................................... iii

REPORT FROM ORGANIZING COMMITTEE ........................................................................ iv

WELCOME ADDRESS ................................................................................................................. v

OPENING REMARKS ................................................................................................................ vi

LIST OF CONTENTS .................................................................................................................... vii

# PLENARY SESSION

1. Strategies to Increase the Domestic Production of Raw Milk in Indonesia and Other South East Asian Countries  
   **John Moran and Phillip Morey** ........................................................................................... 1-11

2. Nutritional Challenges of Lactating Dairy Cattle in a Tropical Climate  
   **J. K. Bernard** .................................................................................................................... 12-17

3. Feed, Land, and Landscape for Sustainable Animal Production  
   **Shaukat A. Abdulrazak a and Isaac M. Osugab** .............................................................. 18-18

4. Food Safety Regulation and Halal Food Issues in Indonesia  
   **Roy Sparringa** .................................................................................................................. 19-19

5. Extension System for Livestock Development in Developing Countries: Knowledge Management Application  
   **Budi Guntoro** ................................................................................................................... 20-27

6. Structural Development of Livestock Farms in a Global Perspective  
   **Henning Otte Hansen** ....................................................................................................... 28-50

7. Whole Farm Problems with Heat Stress – It’s Not Just for Lactating Dairy Cows  
   **Allen Young** .................................................................................................................... 51-57

# LEAD PAPER

1. Antimicrobial Peptides Expression for Defense System in Chicken Gastrointestinal and Reproductive Organs  
   **Yukinori Yoshimura, Bambang Ariyadi, and Naoki Isobe** .............................................. 58-60

2. Improving Technology Adoption and Sustainability of Programs to Increase Bali Cattle Productivity in West Nusa Tenggara Province, Indonesia  
   **Yusuf A. Sutaryono, T. Panjaitan, and Dahlanuddin** ..................................................... 61-66

3. The Role of Family Poultry Systems in Tropical Countries  
   **Yusuf L. Henuk, Monchai Duangjinda, and Chris A. Bailey** ........................................... 67-71
## SUPPORTING PAPERS

### Part I

**Animal Feed and Nutrition**

<table>
<thead>
<tr>
<th>Paper Number</th>
<th>Title</th>
<th>Authors</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>NM-03-P</td>
<td>The Marl and Kaolin in Broiler Diet: Effects on the Bone Weight and the Cutting Yield</td>
<td>D. Ouachem, A. Meredef, and N. Kaboul</td>
<td>72-75</td>
</tr>
<tr>
<td>NM-04-P</td>
<td>The Effect of Liquid Nanocapsule Level on Broiler Fat Quality</td>
<td>Andri Kusmayadi, Zuprizal, Supadmo, Nanung Danar Dono, Tri Yuwanta, Ari Kusuma Wati, Ronny Martien, Sundari</td>
<td>76-79</td>
</tr>
<tr>
<td>NM-05-O</td>
<td>Production and Egg Quality of Quail Layer Given Diets</td>
<td>K.G. Wiryawan, Syamsuhaidi, D.K. Purnamasari, and T.S. Binetra</td>
<td>80-84</td>
</tr>
<tr>
<td>NM-08-P</td>
<td>A Preliminary Study on the Use of Enzyme and Organic Acids in Rice Bran-containing Diet at Two Levels of Dietary Protein for Rabbit</td>
<td>Tuti Haryati and Yono C. Raharjo</td>
<td>85-89</td>
</tr>
<tr>
<td>NM-09-O</td>
<td>Efficacy of Toxin Binder in Reducing Induced Aflatoxin B and Ochratoxin A in Broiler Feed</td>
<td>Anjum Khalique, Muhammad Umer Zahid, Jibran Hussain, Zahid Rasool</td>
<td>90-93</td>
</tr>
<tr>
<td>NM-11-O</td>
<td>Digestibility and Nutritional Value of Gedi (Abelmoschus manihot (L.) Medik) Leaves Meal in the Diet of Broilers</td>
<td>Jet Saartje Mandey, Hendrawan Soetanto, Osfar Sjofjan, Bernat Tulung</td>
<td>100-104</td>
</tr>
<tr>
<td>NM-12-O</td>
<td>Utilization of Skipjack Tuna (Katsuwonus pelamis L.) Gill in Diet as a Source of Protein on Carcass Quality of Broiler Chickens</td>
<td>Jein Rinny Leke, Jet S. Mandey, Meity Sompie, Fenny R. Wolayan</td>
<td>105-109</td>
</tr>
<tr>
<td>NM-13-O</td>
<td>The Dynamics of Indigenous Probiotics Lactic Acid Bacteria on Growth Performance, Total Adherence Bacteria, and Short-Chain Fatty Acids Production in the Ileum of Male Quail</td>
<td>Sri Harimurti, Sri Sudaryati and Bambang Ariyadi</td>
<td>110-110</td>
</tr>
</tbody>
</table>
10. NM-14-O  Selection of Human-origin Lactobacillus Strains as Probiotics with Capability in Synthesizing Conjugated Linoleic Acid and Alleviating Hyperglycemia in Rats (Rattus norvegicus) in Vivo
   Widodo, Pradipta Ayu Harsita, Samuel Aditya, Nosa Septiana Anindita, Tutik Dwi Wahyuningsih and Arief Nurrochmad
   ...............................................................................111-116

   Lilik Retna Kartikasari, Adi Magna Patriadi Nuhriawangsa, Winny Swastike and Bayu Setya Hertanto
   ...............................................................................117-117

12. NM-16-O  Performance of Japanese Quails Fed Different Protein Levels and Supplemented with Betaine
   Adi Ratriyanto, Rysca Indreswari, Adi Magna Patriadi Nuhriawangsa, Apriliana Endah Haryanti
   ...............................................................................118-122

13. NM-17-O  The Influence of Vitamin D3 Levels on Diets with Phytase on Production Performance of Layer Quail (Coturnix coturnix japonica)
   Adi Magna Patriadi Nuhriawangsa, Adi Ratriyanto, Winny Swastike, Rysca Indreswari, Ahmad Pramono and Try Haryanto
   ...............................................................................123-126

14. NM-20-O  Phytobiotics Habbatus Sauda and Garlic Meal: Are Still Efficacious During the Spread of Marek’s Disease Outbreak?
   N.D. Dono, E. Indarto, Kustantinah, Zuprizal
   ...............................................................................127-131

15. NM-22-O  The Effect of Dietary Calcium and Phosphorus Level on Serum Mineral Contents of the Bantul Local Duck within a Day
   H. Sasongko, T. Yuwanta, Zuprizal, Supadmo, and I. Widiyono
   ...............................................................................132-132

16. NR-01-P  Supplementation Local Feed Urea Gula Air Multinutrient Block and Different Levels of Sulphur for Increase Lactation Productivity Doe Also Decrease Kid Mortality Bligon Goat Grazed at Timor Savannah
   Arnold E. Manu, Yusuf L. Henuk, H.L.L.Belli, M.M. Kleden
   ...............................................................................133-137

17. NR-02-P  Methane Production and Rumen Fermentation Characteristics of Buffalo Ration Containing Sorghum Silage with Rumen Simulation Technique (RUSITEC) Methods
   Teguh Wahyono, Dewi Apri Astuti, Komang G. Wiryawan, Irawan Sugoro, Suharyono
   ...............................................................................138-142

18. NR-04-O  Body Weight Gain Response of Sumba Ongole Cattle to the Improvement of Feed Quality in East Sumba District, East Nusa Tenggara, Indonesia
   Debora Kana Hau and Jacob Nulik
   ...............................................................................143-146
<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>19. NR-05-O</td>
<td>Daily Body Weight Gain of Bali Cattle Fed with Leucaena Leucocephala as the Main Ration in West Timor, East Nusa Tenggara, Indonesia</td>
<td>Jacob Nulik and Debora Kana Hau .................................................................147-150</td>
</tr>
<tr>
<td>20. NR-06-O</td>
<td>Tannin Anthelmintic Doses, Metabolizable Energy and Undegraded Protein Contents of Rubber Leaves (Hevea brasiliensis) as Herbal Nutrition for Goats</td>
<td>Sri Wigati, Maksudi Maksudi, Abdul Latief and Eko Wiyanto ..................................151-155</td>
</tr>
<tr>
<td>21. NR-07-P</td>
<td>Consumption and Digestibility of Nutrients in Bali Cattle at the Last Period of Pregnancy Kept under Semi Intensive System Supplemented with Nutritive Rich Feed Contained Lemuru Oil and Zinc</td>
<td>Erna Hartati, E.D. Sulistijo, A. Saleh ....................................................................156-160</td>
</tr>
<tr>
<td>22. NR-08-P</td>
<td>Preliminary Screening for Anthelmintic Potential of Sesbania grandiflora Leaves for Parasitic Infected Goats in Short-Term Trial</td>
<td>Mohd Azrul Lokman, Kanokporn Phetdee, Sathaporn Jittapalapong and Somkiert Prasanpanich ..........................................................161-165</td>
</tr>
<tr>
<td>26. NR-12-O</td>
<td>Influence of Starch Type as Substrate Material in Dry Lactic Acid Bacteria Inoculant Preparation on Fermentation Quality and Nutrient Digestibility of King Grass Silage</td>
<td>B. Santoso, B. Tj. Hariadi and Jeni .....................................................................182-186</td>
</tr>
</tbody>
</table>
28. NR-14-O Restriction Feed and Refeeding Evaluation for Consumption, Feed Cost, Income Over Feed Cost, Percentage of Carcass and Meat Quality Kacang Goat
   Bambang Suwignyo, Miftahush Shirothul Haq, Setiyono, and Edi Suryanto
   ........................................................................................................191-197

29. NR-15-O Characteristics of polyunsaturated fatty acids and nutrient digestibility feed cattle of the fermented rumen fluid by one and two stage in vitro
   Riyanto, J. E. Baliarti, T. Hartatik, D.T. Widayati
   and L. M. Yusiatian........................................................................198-202

30. NR-16-P Performance and Economic Efficiency of young Anglo-Nubian Goat Fed Different Protein and Energy
   I-G.M. Budiarsana, Supriyati and L. Praharani
   .............................................................................................203-207

31. NR-17-P Effect of Choline Chloride Supplementation on Productive Performance of Ettawa Crossbred Goats
   Supriyati Kompiang, I Gusti Made Budiarsana, Rantan Krisnan, Lisa Praharani
   ..................................................................................................208-212

32. NR-18-O Body Weight Gain of Donggala Bull Given Supplement Feed on Basis of Cocoa Pod Husks Fermentation
   F.F. Munier, Mardiana Dewi, and Soharsono
   ..............................................................................................213-217

33. NR-19-O Influence of Cellulolytic Bacteria from Rumen Fluid on In Vitro Gas Production of Robusta Coffee Pulp (Coffea canephora Sp.) Fermented
   Chusnul Hanim, Lies Mira Yusiati, and Fahriza Anjaya Jazim
   ............................................................................................218-222

34. NR-20-P Growth and Productivity of Brachiaria brizantha cv MG 5 under the effect of different dose of NPK fertilization
   Nafiatul Umami, Meita Puspa Dewi, Bambang Suhartanto, Cuk Tri Novianti, Bambang Suwignyo, Nilo Suseno, Genki Ishigaki, Ryo Akashi
   ............................................................................................223-227

35. NR-21-O Indigofera Sp as a Source of Protein in Forages for Kacang Goat in Lactation and Weaning Period
   A. Nurhayu and Andi Baso Lompengeng Ishak
   ............................................................................................228-232

36. NR-22-O Supplementing Energy and Protein at Different Degradability to Basal Diet on Total Protozoa and Microbial Biomass Protein Content of Ongole Grades Cattle
   Dicky Pamungkas, R. Utomo, dan M. Winugroho
   ............................................................................................233-237

37. NR-24-O Nutritive Evaluation of Pineapple Peel Fermented by Cellulolytic Microbe and Lactic AcidBacteria by In Vitro Gas Production Technique
   Lies Mira Yusiati, Chusnul Hanim and Caecilia Siska Setyawati
   ............................................................................................238-242
<table>
<thead>
<tr>
<th>No.</th>
<th>Reference</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>38.</td>
<td>NR-25-O</td>
<td>The Supplementation of ZnSO₄ and Zn-Cu Isoleusinate in the Local Feed Based at Last Gestation Period on Dry Matter Consumption and Digestibility and Calf Birth Weight of Bali Cattle. FMS Telupere, E Hartati, and A. Saleh. 243-247</td>
</tr>
<tr>
<td>39.</td>
<td>NR-26-P</td>
<td>Local Micro Organisms (LOM) as an Activator to Enhance the Quality of Various Plant Waste as Feed. Andi Ella, A. Nurhayu and A. B. Lompengeng Ishak. 248-251</td>
</tr>
<tr>
<td>40.</td>
<td>NR-27-O</td>
<td>Organic Acid and Inhibition of Complete Silage Ration on the Growth of Salmonella enteritidis. Allaily, Nahrowi, M. Ridla, M. Aman Yaman. 252-256</td>
</tr>
<tr>
<td>41.</td>
<td>NR-28-O</td>
<td>The utilization of some feed supplement by using or without molasses on local male sheep on fermentation results in rumen liquid, daily live weight gain, production, C/N ratio and water content of feces. Suharyono, Teguh Wahyono, C. Ellen. K and Asih Kurniawati. 257-260</td>
</tr>
<tr>
<td>43.</td>
<td>NR-30-O</td>
<td>Growth and Productivity of Sorghum Bicolor (L.) Moench in Merapi Eruption Soil with Organic Fertilizer Addition. Suwignyo, B, B. Suhartanto, G. Pawening, B.W.Pratomo. 266-270</td>
</tr>
<tr>
<td>44.</td>
<td>NR-31-P</td>
<td>Quality and Storability of Pelleted Cassava (Manihot utilisima) Leaves var. Bitter. Ristianto Utomo, Subur Priyono Sasmito Budhi, Cuk Tri Noviandi, Ali Agus, and Fidrais Hanafi. 271-274</td>
</tr>
<tr>
<td>46.</td>
<td>NR-33-P</td>
<td>The Effect of Using Different Sources of Carbohydrates to Feed Efficiency on Indigenous Thin Tailed Male Lamb. Muktiani, A, A. Purnomoadi, E. Prayitno. 281-285</td>
</tr>
<tr>
<td>47.</td>
<td>NR-35-O</td>
<td>Substitution of Concentrate by Protein Source Forage for Growing Heifer of Friesian Holstein (FH). Y. Widiawati and M. Winugroho. 286-290</td>
</tr>
<tr>
<td>48.</td>
<td>NR-38-O</td>
<td>The Use of Tricoderma sp. as a Starter of Fermentation Dry Teak Leaves (Tectona grandis) as Animal Feed. Yunianta and Hartatik. 291-295</td>
</tr>
</tbody>
</table>
49. NR-39-P  Nutritive Values of Rice Straw Fermentation Used Carbon Sources on Different Level With Various of Inoculant Levels *Aspergillus niger* and *Lactobacillus plantarum*
R. Agus Tri Widodo Saputro, Nono Ngadiyono, Lies Mira Yusiati, I Gede Suparta Budisatria.................................296-300

50. NR-40-O  The Fat Protective Effect of Fish Oil, Sunflower Seed Oil and Corn Oil on Fluid Rumen Fermentation Parameters
Agustinah Setyaningrum, Soeparno, Lies Mira Yusiati and Kustantinah.................................................................301-305

51. NR-41-O  The Effect of Supplementation of Gliricidia or Rice Bran on Liveweight Gain, Feed Intake and Digestibility of Kacang Goat Fed Mulato Grass
Marsetyo, Damry and Mustaring.................................................306-310

52. NR-42-P  In Sacco Feeding Value of Multi-Stage Ammoniated Palm Press Fiber
Armina Fariani, Arfan Abrar and Gatot Muslim.................................311-311

53. NR-43-O  Alternative Rations to Maintain High Growth Rate of Bali Bulls Fattened with *Leucaena* Based Diet in Sumbawa, Eastern Indonesia
T. S. Panjaitan..................................................................................312-315

54. NR-44-O  The Use of Ramie By-Product (*Boehmeria nivea*) Materials as Complete Feed on the Growth and Hematology of Weaning Ettawa Cross Breed Goat
Emmy Susanti, Ali Agus, Y. Y. Suranindyah, and F.M. Suhartati..............................................................................316-320

55. NR-45-O  Study on Complete Feed Fermentation of Agricultural By-Product on Performance Etaawah Goat
Yusdar Zakaria, Yurliasmi, Cut Intan Novita.................................321-325

56. NR-46-P  Carcass Production and Component of Lamb Provided Metanogenic Inhibitor Feed

**Small Ruminant, Beef Cattle, Animal Draught and Companion Animal**

57. PPO-01-O  Correlation between the Slaughter Weight, Carcass Weight, with Body Measurements of Cattle in Kebumen, Central Java
Setiyono, Suharjono Triatmojo, Trisakti Haryadi, Dino Eka Putra
..................................................................................331-334

58. PPO-02-O  Production of Stingless Bees (*Trigona sp.*) Propolis in Various Bee Hives Design
Agus salim, Nafiatul Umami, Erwan................................................335-338
Restriction Feed and Refeeding Evaluation for Consumption, Feed Cost, Income Over Feed Cost, Percentage of Carcass and Meat Quality of Kacang Goat

Suwignyo, B1*, M. S. Haq1, Setiyono1, E. Suryanto1

1Faculty of Animal Science, Universitas Gadjah Mada, Yogyakarta
2Bachelor Student, Faculty of Animal Science, Universitas Gadjah Mada, Yogyakarta
*Author for correspondence e-mail: bsuwignyo@ugm.ac.id

ABSTRACT: This study aims to determine the effect of restriction feed and refeeding for consumption, feed cost, income over feed cost, percentage of carcass and meat quality of Kacang goat. A total of nine male Kacang goats average age of 12 months with an average weight of 14.96 kg fed consisting of hay forage peanut (rendeng) and concentrate. Goats were divided into three treatment groups. Three goats control (P0) fed based on the needs of dry matter (DM) 3.5% of body weight, three goats feed restriction treatment 50% (P1) and three goats feed restriction treatment 60% (P2) of the requirement by BK for 30 day. The variables measured were intake of dry matter (DM), intake of organic matter (BO), feed cost, the percentage of carcass and meat quality. Data were analyzed by the method of completely randomized design (CRD) pattern unidirectional followed by least significant different (LSD). The result showed that restriction feed and refeeding significant effect on intake of dry matter (DM), intake of organic matter (BO), but did not affect feed cost, percentage of carcass and meat quality. It is concluded that with the effect of restriction feed and refeeding for consumption can produce a similar growth of male Kacang goats.

Keywords: feed restriction, refeeding, Kacang goat, feed cost, percentage of carcass

INTRODUCTION

Forage production usually depends on the season. Fluctuations on tropical countries, where the rainy season forage availability of abundant, but whereas during the dry season there is a shortage of forage. Constraint availability of feed, particularly forages can be a factor in the development problems of ruminants such as goats. Suwignyo, et al., (2012) stated forage fodder is one requirement that is integral in the development of livestock, especially ruminants. Utomo (2003) states forage supply constraints continuously throughout the season is a constraint in the development of animal husbandry. Consequently, many cattle are experiencing indigestion. The ability of an animal to consume feed depends on the type of forage, ambient temperature, body size livestock and animal physiology. Feed restriction management, based on research Aboelmaaty, et al. (2008) that the feed is not provided ad libitum, but restricted in accordance with the needs of feed restriction, followed by providing refeeding, causing a compensatory effect following growth or growth as a result of feed restriction.

MATERIALS AND METHODS

Materials

The materials used in the study was 9 Kacang goats with an average age of 12 months, with initial weight average of 14.96 kg. Cage-shaped stage experiments with individual plots measuring 1.5 m x 0.75 m are equipped with a feed and water place, with the cage floor height of 60 cm from the ground. Forage (60%) in the form of peanut hay (rendeng) and concentrates in the form of pellets (40%) Gemak A. Drinking water provided ad libitum. The composition of forage and concentrates are presented in Table 1.
Table 1. The chemical composition of feed research

<table>
<thead>
<tr>
<th>Feed material</th>
<th>Composition (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DM</td>
</tr>
<tr>
<td>Peanut hay (rendeng)</td>
<td>53.14</td>
</tr>
<tr>
<td>Concentrates</td>
<td>95.74</td>
</tr>
</tbody>
</table>

The tools used are scales sit EK3651 brand Camry models with a capacity of 5 kg sensitivity 1 g to weigh the feed given and the rest (forage and concentrates). Scales cattle brands Camry models EB9872 capacity of 150 kg with a sensitivity of 100 g to weigh goats. Willey mill with a hole diameter of 1 mm sieve to grind feed and feces samples. Digital analytical balance brands Denver instrument XL 410 with a capacity of 500 g and 0.001 g sensitivity that is used to weigh the feed and feces samples for analysis. A set of tools and a set of tools proximate analysis of physical and chemical testing of meat.

Pre-research

Pre-research was conducted during one month for the purpose of adaptation livestock. Nine goats were randomized to 3 treatment groups, 3 goats as a control (P0), 3 goat as a treatment 50% of feed restriction (P1) and 3 goats as a treatment 60% of feed restriction (P2). Goats weighed weight initially, placed in cages appropriate treatment plots. Feed with forage and concentrate with ratio of 40:60 is given twice a day, morning and afternoon at 07.00 a.m at 04.00. p.m.

Research stage

The research was carried out in two stages. Phase feed restriction for 30 days. Livestock are given 50% and 60% of the total daily requirement DM. The second stage of refeeding for 30 days where the feed was given ad libitum. The transition phase from stage to stage adaptations made gradual restriction, which is done gradually decrease in feed for one week. The same is done when changing from stage to stage refeeding restriction.

Variables Observed

Variables observed during the study were feed consumption, body weight, carcass weight, carcass percentage, water holding capacity, cooking losses, tenderness and texture of meat.

Data Analysis

This study uses data analysis in the form of completely randomized design (CRD) unidirectional pattern (Hanafia, 2010).

RESULT AND DISCUSSION

Nutrient Consumption

Consumption of nutrients in goat on stage feed restriction and refeeding shown in Table 2, is calculated based on the reduction of nutrients in the feed and food remains. Feed given as much as 3.5% of the body weight of goats. At this stage of feed restriction, there is no residual feed in the feed place. This also occurs at the stage of refeeding.
Table 2. Consumption of nutrients Kacang goat (g/kg/day)

<table>
<thead>
<tr>
<th>Variabel</th>
<th>Control (P0)</th>
<th>Restriction 50% (P1)</th>
<th>Restriction 60% (P2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Restrication stage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DM Consumption</td>
<td>35.49 ± 1.63b</td>
<td>16.67 ± 0.64a</td>
<td>17.06 ± 6.01a</td>
</tr>
<tr>
<td>OM Consumption</td>
<td>32.05 ± 1.47b</td>
<td>15.05 ± 0.58a</td>
<td>15.59 ± 6.53a</td>
</tr>
<tr>
<td>Refeeding stage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DM Consumption</td>
<td>36.65 ± 1.81a</td>
<td>37.93 ± 0.78ab</td>
<td>54.40 ± 14.33b</td>
</tr>
<tr>
<td>OM Consumption</td>
<td>33.09 ± 1.64a</td>
<td>34.25 ± 0.71ab</td>
<td>49.75 ± 13.49b</td>
</tr>
</tbody>
</table>

a, b superscript in the same row indicate differences (P < 0.05)

Based on the results of statistical analysis showed that treatment of feed restriction of 50% and 60% real impact on the consumption of DM and OM in Kacang goats. According to Arora (1995), feed consumption is fundamental that will determine the level of nutrients, function and response of cattle as well as the use of nutrients in feed for livestock body needs.

**Dry matter intake**

Consumption of DM in Kacang goats showed significantly different results between the control goats (P0) with goat restriction (P1 and P2). Table 2 shows the DM intake in goat’s treatment decreased compared with control. DM intake goat P0 at restriction stage is 35.49 g/head/day, whereas P1 and P2 goat consumes DM as much as 16.67 g/head/day and 17.06 g/head/day. This difference occurs because the goat’s clear treatment given amount of feed limited to 50% and 60% of the needs should be.

Feed consumption returns to normal when treatment is stopped the feed restrictions. P0 goat consumes DM as much as 36.65 g/head/day, whereas P1 and P2 goat feed consume as much as 37.93 g/head/day and 54.40 g/head/day. Increasing the number of feed consumption resulting in an increase in weight, resulting in an increased need for feed. Apart from the restrictions on the amount of feed given, the level of consumption of nutrients is influenced by several factors. According to Tillman, *et al.* (1998) the rate of digestion of feedstuffs in the digestive tract, the rate of spending the rest of feed consumed and the level of compliance with feed ingredient consumed nutrients affect the amount of consumption of feed materials on goats.

**Consumption of organic materials**

Consumption of OM in the control and treatment of goat shows the effect of feed restriction. In Table 2 shows that the consumption of OM per kilogram of body weight a goat is affected by the amount of DM intake, the higher the amount of DM intake, the higher the consumption of OM. Consumption of OM on the P0 goat feed restriction phase is 32.05 g/head/day, whereas P1 and P2 goat is 15.05 g/head/day and 15.59 g/head/day. The difference between the DM intake and OM at this stage is from 1 to 2 g, is the same difference between the control and treatment of goat. Increased consumption of OM occurs when feed restriction is stopped and feeding back according to need. At this stage, goat feed P0 consume as much as 33.09 g/head/day, whereas P1 and P2 goats consume OM as much as 34.25 g/head/day and 49.75 g/head/day. The difference in DM intake and OM at this stage is 3 to 5 g. According Chakra, *et al.* (2005) OM is part of the dry ingredients and contains the largest portion of the composition of DM, so that the consumption of OM is determined by the amount of DM intake.
Body Weight Changes

Changes in body weight of goats affected by the amount of feed consumed for each animal. As shown in Figure 1, goats P0 without limitation feed showed normal growth pattern indicated by weight gain continues to increase. Current consumption of livestock feed each restricted by 50% and 60% in goats P1 and P2 as a result of restriction feed, then the weight loss and when the feed is given back as normal by the method of ad libitum, feed consumption increase followed by compensatory growth or growth following a compensation of feed given to each goat. That is the treatment of feed restriction can reduce feed intake, thus saving feed requirements.

![Figure 1. Graph of body weight of Kacang goats](image)

Weight loss P1 goat average 21.91 g per day, while the P2 goats decreased an average of 16.19 g per day. Weight loss occurs as a result of feed restriction is done. Figure 1 shows that 50% of feed restriction treatment is better than 60% of feed restriction treatment. Which is expected to supply the nutritional needs of the feed are not fulfilled for various purposes livestock activities of the body, resulting in weight loss goat P1 and P2. Factors that lead to a decrease in body weight gain during periods of food restriction among other things because of the limited supply of nutrients and energy to support the growth of the network, so the cattle need to be taken from the body of livestock activity itself. As a result of cattle being thin (Hornick, et al. 2000).

Carcasses Percentage

The resulting carcass of a Kacang goat treated controls and restrictions feed shows the results are not much different. Table 3 shows the data cut weight, carcass weight and carcass percentage goats.

| Table 3. The weight cut, weight and percentage of Kacang goat carcass |
|-------------------------|-----------------|---------------------|
| Variabel                | Goat's          |                     |
|                         | Control (P0)    | Restriction 50% (P1)| Restriction 60% (P2) |
| Weight cut mm           | 16.85 ± 4.87    | 20.30 ± 2.62        | 20.90 ± 1.31         |
| Weight carcass mm       | 07.47 ± 2.90    | 09.42 ± 1.73        | 09.91 ± 0.90         |
| Carcass presentation mm | 43.67 ± 4.56    | 46.25 ± 3.40        | 47.38 ± 1.75         |

1) Values shown as mean ± standard deviation

2) not real or non significant

Goats treated feed restriction has a slightly superior carcass percentage when compared with control. Control goat carcass percentage is 43.67%, while the goat carcass P1 and P2 is 46.2% and 47.38%. Even statistically relatively equal or no real difference, but if the note contained carcass percentage difference between control and treatment restriction is 3% to 4% means goat carcass treated feed restriction has advantages when compared with controls.
The 6th International Seminar on Tropical Animal Production
Integrated Approach in Developing Sustainable Tropical Animal Production
October 20-22, 2015, Yogyakarta, Indonesia

The greater the weight cut, the greater the resulting carcass weight. Goats by feeding on a limited basis will experience slow growth or stop, but after getting enough fodder, goats will grow back faster than normal growth rate. According Soeparno (2009) growth is called compensatory growth, or growth that is followed. According Triyantini, et al. (2002) administration of two different types of feed at different conditions on Kacang goat carcass can produce almost the same percentage.

Meat Quality

Meat quality determined from before and after the animal was cut. Statistical tests showed no significant difference in cooking shrinkage testing, tenderness and Water Holding Capacity (WHC), while at pH testing there is a real difference. Table 5 shows the results of physical tests Kacang goat meat treated controls and restrictions.

<table>
<thead>
<tr>
<th>Variabel</th>
<th>Control (P0)</th>
<th>Restriction 50% (P1)</th>
<th>Restriction 60% (P2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cooking lose^{ms}</td>
<td>33.59 ± 9.57</td>
<td>36.55 ± 3.90</td>
<td>33.07 ± 5.06</td>
</tr>
<tr>
<td>Tenderness^{ms}</td>
<td>06.48 ± 0.83</td>
<td>07.85 ± 6.29</td>
<td>06.50 ± 3.70</td>
</tr>
<tr>
<td>WHC^{ms}</td>
<td>30.00 ± 0.01</td>
<td>31.00 ± 0.01</td>
<td>30.00 ± 0.00</td>
</tr>
<tr>
<td>pH</td>
<td>06.36 ± 0.24^{ab}</td>
<td>06.25 ± 0.19^{a}</td>
<td>06.55 ± 0.16^{b}</td>
</tr>
</tbody>
</table>

\(^{a,b}\) Superscript in the same row indicate differences (P < 0.05)

Treatment of feed restriction made on goat not be the determining factor for the quality of the meat based on the results of this study. According to Martin, et al. (2004) the quality of the meat is affected by two factors, first downstream factors that included the technology before and after the cutting process, the content of nutrients and microbial content of the meat and the second is the upstream factors include livestock genetics, physiology and nutritional feed.

Cooking shrinkage

The test results show that the shrinkage cook P0 is 33.59%, while the cooking shrinkage goat P1 and P2 are 36.55% and 33.07%. Cooking shrinkage values between control and treatment restriction is no real difference. Cooking too long or high temperatures during cooking resulting in greater levels of meat lost fluid levels, thus lowering the quality of meat produced. According Soeparno (2009), shrinkage cookware is an indicator of nutritional value of meat associated with higher levels of meat juice, which is the amount of water that is bound within and between muscles. The meat juice is a component of the texture that will determine the tenderness of meat. Widiati, et al., (2002) adds that the discharge of meat due to the occurrence of muscle shrinkage during cooking and heating.

Tenderness

Based on testing performed, the value of goat meat tenderness P0 of 6.48, while mutton P1 and P2 are 7.85 and 6.50. Kacang goat meat tenderness value has no real difference. The smaller the value of tenderness, the more tender the meat produced, expressed by Forrest, et al. (1975). Goat tenderness value P0 to P2 only has a difference of 0.02, which means that the more a minimum of feed, can produce quality that is superior tenderness. Treatment restrictions feed on livestock is not a major factor in deciding the value of tenderness, expressed by Soeparno (2009),
that the tenderness of meat is influenced by factors before and after cutting, factors before cutting includes genetic, species, race, type of animal, sex, age when cut, the nutrients contained in the feed and livestock stress conditions. After cutting factors include methods of withering, electrical stimulation, a method cooking, pH carcass and meat.

Water Holding Capacity (WHC)

The value of the test result value WHC on goat’s meat P0 is 30.00, while the goat meat treated with P1 and P2 are 31.00 and 30.00. These results indicate that goat meat control and treatment had no significant difference. Value WHC is one of the factors that will determine the delicacy and meat in consumer acceptance. Treatment restrictions that do not feed into a major factor in deciding the value of WHC, but a decrease in the pH value becomes the deciding factor WHC values. According to Lawrie (2003), a decrease in WHC of meat proteins caused by a decrease in pH and as a result of damage sarcoplasmic proteins. Soeparno (2009) argues that WHC is affected by pH, the pH is higher or lower than the point isoelectric proteins of meat, and WHC will increase.

pH value

pH value has real difference between the value of goat meat P0, P1 and P2. P0 goat meat has a pH value of 6.36, while goat’s meat treatment P1 and P2 has a pH value of 6.25 and 6.55. The pH value of the smallest owned by goat’s meat P1, then P0 and P2. Factors that because the size of the pH value is a factor before and after cutting. The pH value of the test results higher than normal pH value of carcass and meat goats. According to the research Sunarlim and Setiyanto (2005), the average pH value of carcass and meat Kacang goat is 5.53. Soeparno (2009), argued that the normal pH is 5.4 to 5.8.

Feed Cost

| Table 5. Economic analysis of restriction and refeeding to feed the Kacang goats |
| Variabel | Goat’s Control (P0) | Restriction 50% (P1) | Restriction 60% (P2) |
| Feed conversion | 10.15±3.09 | 9.89±1.11 | 16.46±6.58 |
| Feed Cost/Gain (IDR)* | 48,542.66±9,591.83 | 44,529.78±4,116.32 | 56,441.71±8,779.02 |

\*Values shown as mean ± standard deviation

\*\* Superscript in the same row indicate differences (P <0.05)

Not real or non significant

Feed conversion

Feed conversion ratio (FCR) or conversion of the feed is obtained by dividing the ration dry matter intake with an average body weight gain. Average feed conversion for each treatment and control, restriction of 50%, 60% restriction is 10.15; 9.89; 16.46. Based on these values, the values of feed conversion of the treatment of the most good at 50% restriction. At the 60% restriction resulted in higher feed conversion due to body weight gain is relatively small. The feed conversion rate means to increase body weight by 1 kg, requiring ration respectively to control as much as 10.15 kg, 9.89 kg for a restriction to 50%, and 16.46 kg of 60% restriction. According to Hadi (2008), the smaller the feed conversion rate, the more efficient utilization of feed by livestock (conversion rate of about 4-6).

Feed cost per gain

Feed cost per gain value is calculated based on the cost of feed and the resulting weight. Price feeder goats were used for fattening is IDR 30,000/kg live weight, the price of concentrate feed IDR 5,500/kg, the price of hay peanut IDR 750/kg and the price for the goats that had been fattened is IDR 54,500/kg of live weight. Statistical analysis between the control treatment, restriction of
50% and 60% restriction does not show significant differences. The average feed cost per gain (IDR) generated in this study respectively for the control, restriction of 50% and 60% restriction is 48542.66 ± 9591.66; 44529.78 ± 4116.32; 56441.71 ± 8779.02. Results of the study indicated that restriction and refeeding can produce feed cost per gain was not significantly different (P <0.05). Although in general, restriction and refeeding can produce feed cost per gain cheaper than without treatment. Therefore, restriction and refeeding can be used as an alternative to solve the problem during the dry season.

CONCLUSIONS

Based on the results of research that has been done, it can be concluded that the restriction of feed (feed restriction) and refeeding (compliance with feed back) significantly affected the rate of consumption of dry matter (DM) and organic matter (BO). However, the percentage of carcasses, quality of goat meat between the controls feed cost of feed restriction treatment with 50% and 60% not significant.

REFERENCES


CERTIFICATE

This is to certify that

BAMBAR SEGNUMYO

has participated as

ORAL PRESENTER

at the 6th International Seminar on Tropical Animal Production
"Integrated Approach in Developing Sustainable Tropical Animal Production"
Faculty of Animal Science Universitas Gadjah Mada, Yogyakarta-Indonesia
October 20th - 22nd, 2015

Chairman
Organizing Committee

Dean
Faculty of Animal Science
Universitas Gadjah Mada

Prof. Dr. Ali Agus

Prof. I Gede Suparta Budisatria, Ph,D.