PROCEEDINGS of
IndoMS International Conference on Mathematics and Its Applications (IICMA) 2009
Yogyakarta - Indonesia, October 12th - 13th, 2009

Published by
IndoMS (Indonesian Mathematical Society)

Copyright © 2010
Proceeding Team

Editors
Atok Zulijanto, Fajar Adi Kusumo, Budi Surodjo, Ch. Rini Indrati
Indah Emilia Wijayanti, Irwan Endrayanto

Technical Support
Dewi Kartika Sari, Karyati, Susiana, Putri Mahanani

Layout & Cover
Parjilan
Referees

Algebra
Prof. Zhao Dongsheng .. NIE- NTU Singapore
Prof. Sri Wahyuni ... Universitas Gadjah Mada
Prof. Pudji Astuti ... Institut Teknologi Gadjah Mada
Ari Suparwanto ... Universitas Gadjah Mada

Analysis
Prof. Hendra Gunawan .. Institut Teknologi Gadjah Mada
Yudi Soeharyadi ... Universitas Gadjah Mada
Supama ... Universitas Gadjah Mada
Ch. Rini Indriati ... Universitas Gadjah Mada
Atok Zulijanto ... Universitas Gadjah Mada
Prof. Mashadi ... Universitas Riau
Prof. Soepama Damawijaya .. Universitas Gadjah Mada

Applied Mathematics
Prof. Widodo ... Universitas Gadjah Mada
Prof. Edy Soewono ... Institut Teknologi Bandung
Lina Aryati ... Universitas Gadjah Mada
Rieske Hadiyanti ... Institut Technologi Bandung
Prof. Franz Kappel ... Graz University
Edy Cahyono ... Universitas Haluoleo
Hartono ... Universitas Negeri Yogyakarta
Fajar Adi Kusumo ... Universitas Gadjah Mada

Computer, Combinatorics and Graph
Prof. Edy Tri Baskoro .. Institut Teknologi Bandung
Tri Atmojo ... Universitas Sebelas Maret
Kiki Aryanti Sugeng .. Universitas Indonesia
Saib Suwilo ... Universitas Sumatera Utara
Khabib Mustofa .. Universitas Gadjah Mada
Edy Winarko ... Universitas Gadjah Mada

Mathematics Education
Abdur Rahman As’ari .. Universitas Negeri Malang
Utari Sumarmo ... Universitas Pendidikan Indonesia
Yansen Marpaung .. Universitas Sanata Dharma
Jaelani ... Universitas Negeri Yogyakarta
Prof. Suryanto .. Universitas Negeri Yogyakarta

Statistics
Prof. Subanar ... Universitas Gadjah Mada
Prof. Budi Nurani ... Universitas Padjadjaran
Danardono ... Universitas Gadjah Mada
Gunardi ... Universitas Gadjah Mada
Muhammad Syamsuddin ... Institut Teknologi Bandung
I Wayan Mangku .. Institut Pertanian Bogor
Preface
from President of IndoMS for Proceeding of IICMA 2009:

First of all, I would like to pray for God for His mercy so that we could finish the Proceeding of IICMA 2009 (IndoMS International Conference on Mathematics and its Applications 2009) held on October 12th-13th, 2009 at the Departement of Mathematics Gadjah Mada University Yogyakarta Indonesia. On behalf of the IndoMS (Indonesian Mathematical Society), I would like to say congratulation to all authors in the proceeding.

IndoMS or formerly known as "Himpunan Matematika Indonesia" is a forum for mathematicians and users of mathematics as well as people who have interest in enhancing mathematics in Indonesia. The Society is a scientific, nonprofit, non-governmental and professional organization. It was established on July 15th, 1976 in Bandung, West Java. The objectives of the Society are to enhance and extend mathematical knowledge, extend education in the Mathematical sciences, and to increase the role of mathematics in Indonesia. In 2009 IndoMS has 1.151 members consisting of university teachers, mathematicians, statisticians and mathematics-education researchers from 30 Indonesian universities, and school teachers from elementary and high schools. IndoMS has established 8 provincial officers to stimulate and enhance mathematical activities in the country. The branches are branch Special Territory of Yogyakarta and Central Java, branch Banten, Special Territory of Jakarta, and West Java, branch East Java, branch South and West Sulawesi, branch South Kalimantan, branch South Sumatera, branch Nanggroe Aceh Darussalam and South Sumatra, and branch East Nusa Tenggara. Since 1976, IndoMS has already 14 times organized National Conference in Mathematics and National Congress. The next National Conference in Mathematics and National Congress will be held in Manado State University, North Sulawesi on June 30–July 3, 2010. Since 2006, IndoMS also has already 3 times organized National Conference in Mathematics Education. The next National Conference in Mathematics Education will be held at the Yogyakarta State University in 2011.

Starting in 2009 IndoMS organize International Conferences. IICMA2009 is IndoMS International Conference on Mathematics and its Applications 2009. It is majority supported by Directorate General of Higher Education (DGHE), Department of National Education, Indonesia through "Professional Organization Symposium Competition Program" (Program Hibah Symposium Organisasi Profesi). IndoMS is one of professional organizations which granted by this program. In this conference we facilitate researchers and users of mathematics to exchange ideas and discuss research results and development of mathematics internationally in the fields of mathematics including mathematics education and its applications.

All 166 full papers in the conference has been reviewed by 36 competence experts. As results of the conference, we got 20 papers are feasible to be published in international journals, 17 papers are feasible to be published in aspirated international journals, 32 papers are feasible to be published in national journals, 65 papers published in this proceeding, and 32 papers are rejected.

Finally, I would like to express my sincere appreciation to:
- Dean of Faculty of Mathematics and natural Sciences and Rector of Gadjah Mada University for the permission and cooperation in holding the Conference
- Steering Committee and Organizing Committee for all efforts for the success of the conference
- All invited speakers and all participants from Indonesia and abroad for the active participation of the conference.
- All editors for all efforts to finish this proceeding.
 Last but not least, my sincere appreciation is also extended to the DGHE for the major support of the conference.

Yogyakarta, January, 2010
President of IndoMS 2008-2010

Prof. Dr.rer.nat. Widodo
Preface from the Committee

The proceeding of IICMA Conference is a collection of all selected papers that were presented in IndoMS International Conference on Mathematics and its Applications (IICMA) 2009 held at Department of Mathematics – Gadjah Mada University, Yogyakarta, October 12th – 13th, 2009. The selected papers are based on the reviewed results by 36 competence reviewers. Each paper has been reviewed by at least two reviewers. On behalf of the Committee, we would like to say thank you very much to all of the reviewers.

There are 118 papers in this proceeding coming from diverse aspects of mathematics ranging from Analysis, Applied Mathematics, Algebra, Theoretical Computer Science, Mathematics Education, and other related topics. We are sure the papers will inspire, not only writers, but also many other researches in developing mathematics and its applications. Please find the benefit of the proceeding.

Yogyakarta, January 2010
On behalf of the Committee IICMA 2009

[Signature]

Dr. Ch. Rini Indrati, M.Si.
Chair
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cover</td>
<td>ii</td>
</tr>
<tr>
<td>Proceeding Team</td>
<td>iii</td>
</tr>
<tr>
<td>Referees</td>
<td>iv</td>
</tr>
<tr>
<td>Preface from President of IndoMS</td>
<td>v</td>
</tr>
<tr>
<td>Preface from the Committee</td>
<td>vii</td>
</tr>
<tr>
<td>Contents</td>
<td>viii</td>
</tr>
<tr>
<td>ALGEBRA</td>
<td></td>
</tr>
<tr>
<td>A Natural Property Of A Boundary Operator On A Simplicial Chain Complex</td>
<td>0001-0008</td>
</tr>
<tr>
<td>Ema Carnia, Sri Wahyuni, Irawati, and Setiadji</td>
<td></td>
</tr>
<tr>
<td>Hereditary Path Algebra</td>
<td>0009-0014</td>
</tr>
<tr>
<td>Faisal Arwar</td>
<td></td>
</tr>
<tr>
<td>Dual Near-Rings and Dual N-Groups (Revisited)</td>
<td>0015-0022</td>
</tr>
<tr>
<td>Indah Emilia Wijayanti</td>
<td></td>
</tr>
<tr>
<td>Quivers of Path Algebra and Path Coalgebras</td>
<td>0023-0028</td>
</tr>
<tr>
<td>Intan Muchtadi-Alamsyah and Hanni Garminia</td>
<td></td>
</tr>
<tr>
<td>Quotient Semigroups Induced by Fuzzy Congruence Relations</td>
<td>0029-0034</td>
</tr>
<tr>
<td>Karyati, Sri Wahyuni, Budi Surodjio, and Setiadji</td>
<td></td>
</tr>
<tr>
<td>Algebras, Coalgebras and State-Based Systems</td>
<td>0035-0052</td>
</tr>
<tr>
<td>Klaus Denecke and W. Supaporn</td>
<td></td>
</tr>
<tr>
<td>A Max-Plus Algebra Approach to Critical Path Analysis in the Project</td>
<td>0053-0060</td>
</tr>
<tr>
<td>Network with Fuzzy Activity Times</td>
<td></td>
</tr>
<tr>
<td>M. Andy Rudihipto, Sri Wahyuni, Ari Suparwanto, and F. Susilo</td>
<td></td>
</tr>
<tr>
<td>Polynomial Over Dedekind Domain</td>
<td>0061-0068</td>
</tr>
<tr>
<td>Monika Rianti Helmni and Intan Detiena Muchtadi</td>
<td></td>
</tr>
<tr>
<td>The Max-Plus algebraic Approach of Reachable Space and Observable</td>
<td>0069-0076</td>
</tr>
<tr>
<td>Congruence of Linear Discrete Event System</td>
<td></td>
</tr>
<tr>
<td>Nilamsari Kusumastuti and Ari Suparwanto</td>
<td></td>
</tr>
<tr>
<td>Structure Theory of Twisted Toeplitz Algebras</td>
<td>0077-0082</td>
</tr>
<tr>
<td>Rizky Rosjanuardi</td>
<td></td>
</tr>
<tr>
<td>On $\tau[M]$ Cohereditary Modules</td>
<td>0083-0094</td>
</tr>
<tr>
<td>Suprapto, Sri Wahyuni, Indah Emilia Wijayanti, and Irawati</td>
<td></td>
</tr>
<tr>
<td>Hereditary path Algebra and Its Characteristic Trough Injective Module</td>
<td>0095-0100</td>
</tr>
<tr>
<td>Uni Mardiyati</td>
<td></td>
</tr>
<tr>
<td>ANALYSIS</td>
<td></td>
</tr>
<tr>
<td>On Minimum and Maximum of Functions of Small Baire Classes</td>
<td>0101-0106</td>
</tr>
<tr>
<td>Atok Zaliwanto</td>
<td></td>
</tr>
<tr>
<td>An Irreducible Continuous Linear Representation of Topological Group</td>
<td>0107-0112</td>
</tr>
<tr>
<td>and Invariant Space</td>
<td></td>
</tr>
<tr>
<td>Diah junia Eksi Palupi, Ch. Rinsi Indrati, and Soeparna Darmawijaya</td>
<td></td>
</tr>
<tr>
<td>Quasicontinuous Selection for One to Finite Valued Generalized</td>
<td></td>
</tr>
<tr>
<td>Continuous Multifunctions</td>
<td>0113-0118</td>
</tr>
<tr>
<td>D.K. Ganguly and Piyali Mallick</td>
<td></td>
</tr>
</tbody>
</table>
Two Important Extension Theorems for The GAP-Integral
D.K. Ganguly and Ranu Mukherjee..0119-0128

Bi-Lipschitz Trivial Quasi-Homogeneous Stratifications
Dwi Juniati and Guillame Valette...0129-0138

Determination of Whitney, Kuo-verdier and Lipschitz Stratification for the
surfaces $y = x^b x^c + x^d$
Dwi Juniati, Laurent Noirel, and David Trotman.................................0139-0150

Fractional Integral Operators on Lebesgue and Morrey Spaces
Hendra Gunawan and Idha Sihwanningrum...0151-0160

Wavelet Neural Network on Multiresolution Analysis with Particle Swarm
Optimization
Julan Hernadi..0161-0172

A Construction of Tight Wavelet Frames with Dilation Factor M > 2
Mashud Yunas and Armein Z R Langi..0173-0178

Banach Fixed Point Theorem on M-Fuzzy Metric Space
Muhammad Ashar Karim and Ch. Rini Indrati.......................................0179-0188

Modification of Hilbert-Schmidt Operator into the Sense of Banach Space
Muslim Answori, Soeparna Darmawijaya, and Supama..........................0189-0204

Double and Multiple-Normed Space
Soeparna Darmawijaya...0205-0214

Stumtel Class of Non-Homogeneous Space Type and Generalized Morrey Space
Wono Setya Budhi, Ida Sihwanningrum, and Yudi Soekarya..................0215-0220

APPLIED MATHEMATICS

The Problem of Acceleration Estimation
Alexander Agung S. G...0221-0228

A Mathematical Model of Knowledge-Growing System: A Novel Perspective
in Artificial Intelligence
Arwin Datunwiyati Wahyudi Sumari, Adang S. Ahmad, Arief I. Wuryandari, and Jaka Sembiring.................................0229-0240

Stochastic Model for the Population Dynamic of Anoa (Bubalus sp) in a
Farrying Multipupulation
Astrid Sari...0241-0252

Impact of Perfect Vaccination with Super Infection Mechanism to Pathogen
Strain Replacement in an Epidemic Model
Bayu Prahandono, Lina Aryan, and Fajar Adi Kusumo............................0253-0264

A Semidefinite Relaxation Approach to Solve Uncertain Conic Optimization
Problem with Binary Variables
Diah Chaerani, Sudrajat, and Firdiana..0265-0276

The Leslie Matrix in Population Model with Age Structured
Dwi Lestari..0277-0286

Numerical Solution of Mathematical Modeling of Tumor Growth with
Immunotherapy and Chemotherapy
Edwin Setiawan Nugroho, Mustafa Mamat, and Agus Kartono..................0287-0300

Modeling the Eradication of Aedes Aegypti with Sterile Insect Technique
Emingroho Ratnasari and Lina Aryati..0301-0312

A 2-D Interpolation Method that Minimizes an Energy Integral
Endang Rusyaman, Hendra Gunawan, A.K. Sugriyatna, R.E., and Siregar.................0313-0326

The Reduced Rank of Ensemble Kalman Filter to Estimate the Temperature of
Non Isothermal Continue Stirred Tank Reactor
Erna Apriliani and D. Adekiya..0327-0334
Normalisation of a Coupled-Three Oscillators with Energy-Preserving Quadratic Nonlinearity Near 1:2: \(\varepsilon \)-Resonance
Fajar Adi Kusuma
0335-0340

Data Selection with Hessian Matrix
Hanna A. Parhusip
0341-0352

Modelling of Total Investment and Its Efficiency in The District of Sidomukti
Hanna A. Parhusip
0353-0362

Bicriteria interval Linear Programming
Herry Suprajitno and Ismail Bin Mohd
0363-0368

A Method for Solving Multi-objective Linear Programming with Fuzzy Probabilistic Coefficient Objective Function
Indarsth, Widodo, and Ch. Rini Indrastuti
0369-0376

Optimal Downlink Power and Rate Allocation in Multi-Cells CDMA
Irwan Embayanto Alucius, A.F. Gabor, and R.J. Boucherie
0377-0390

Study the Dynamics of Human Infection by Avian Influenza: Case Study in the Central Java Province of Indonesia
Kartono, Widowati, and R. Heri SU
0391-0396

Multi-Assets Barrier Options as Unique Viscosity Solution to Hamilton-Jacobi-Bellman Equations
Komang Dharmawan
0397-0410

Fully Nonlinear Solutions of Supercritical Flow on Terminated Channel
L. H. Wiryanto and Adil A. Akbar
0411-0418

Local-Time Dependence Amplitude of Fc3 Magnetic Pulsations Observed at Biak, Indonesia
L. Muhammad Musofar K
0419-0424

A Numerical Technique to Obtain a Scheme of 8th Order Implicit Runge-Kutta Method to Solve the First Order of Initial Value Problems
La Zakaria
0425-0434

Local Non-Similarity Analysis On MHD Convective Heat and Mass Transfer Flow Past a Wedge with Viscosity and Thermal Radiation Effects
Muhaimin Ismoen, Ishak Hashim, and R. Kandiasamy
0435-0450

Stochastic Modeling the Spread Of DHF in a Single Closed and Open Population
Mukhtar and Asral Sani
0451-0464

Ergodicity in an Infinite Measure Space
Nanang Suryanto
0465-0470

Stability of Delayed SIR Model with Vital Dynamics
Rubono Setiawan
0471-0478

The Time Periodic Damping Coefficient In The Dynamic Of Cable Stayed Bridges
S. B. Wahya
0479-0488

Feedback Zero-Sum Linear Quadratic Dynamic Game for Descriptor System
Salmah
0489-0498

Ant Colony Optimization Algorithms for the Traveling Salesman Problem
Sarwadi and Agus Leksono
0499-0508

Parametric Excitation in a Self-Exited Three-Degrees of Freedom Problem
Siti Fatimah
0509-0516
Fuzzy State Feedback Control with Multi-Objectives
Solikhatun .. 0517-0524

Solving of Degenerate Cauchy Problem Via the Alternative Form on
Factorization Problem
Suadti Haryanto, Lina Aryati, and Widodo .. 0525-0534

Stability Analysis and Maximum profit of Predator-Prey Population Model
With Time Delay and Constant effort of Harvesting
Syamsuddin Toaha ... 0535-0546

Description and Modelling of Hybrid Power Systems
Tryono Ruby and Volker Rehbock ... 0547-0560

Mathematical Modeling and Analysis of Ammonia, Nitrite, and Nitrate
Concentration: Case Study in the Polder Tawang Semarang, Indonesia
Widowati, Hermin PS, and Sidimin ... 0561-0570

A Mathematical Model for the Spread of Avian Influenza: Spread from Bird
to Human
Yuni Yulida and Lina Aryati ... 0571-0578

COMPUTER, GRAPH AND COMBINATORICS

Implementation of Hidden Markov Model in Clustering of Sequence
Protein and Its Improvement Using Prior Knowledge
Afshahyati, Sri Hartati, Sri Mulyana .. 0579-0588

Critical Set of Edge Magic Total Labeling of Cycle Plus 2 edges Graph
Chairul Imron and Suhud Wahyudi ... 0588-0594

Super Edge Antimagic Total Labeling of Disjoint Union of Threeangular
Ladder and Lobster Graphs
Dafik, Slamir, M. Puad, and Riris R.R. 0595-0606

Construction of Edge Consecutive Edge Magic Total Labeling on a Disconnected Graph
Denny Riama Silaban and Kiki A. Sugeng 0607-0612

On y-Labeling of Wheels and Fan Graphs
Diari Indriati and Mania Roswitha ... 0613-0618

On Total Vertex Irregularity Strength of Cocktail Party Graph
Kristina Wijaya, Slamir, and Mirka Miller 0619-0622

The Size Multipartite Ramsey Numbers \(m_j \) (\(P_n, C_3 \))
Syafriadi Sy. .. 0623-0626

The Eccentric Digraph of an Umbrella Graph
Tri Atmojo Kusmayadi and Muhammad Abdul Rivali 0627-0638

The Eccentric of Double Cones Graph
Tri Atmojo Kusmayadi and Muhammad Abdul Rivali 0639-0646

MATHEMATICS EDUCATION

Computational Estimation in Grade Four: A Design Research in Indonesia
Al Jupri ... 0647-0652

The Achievement of Students' Mathematical Power by Using APOS Theory
Elah Nurlaelah and Utari Sumarno ... 0653-0666
The Design of Mathematics Learning Based on Vocational Skill in Vocational High School (Use Contextual Teaching and Learning, Intergrated with Vocational Problem Based Learning)
Hobri... 0667-0680

Some Misconceptions On Variable Ideas
Iwan Pranoto.. 0681-0688

Factors Affecting in Indonesian Student Achievements on the International TIMSS Study
Mohamad Syafiiuddin.. 0689-0698

Critical Observation toward Proportional Reasoning Leveling
Rahmah Johar.. 0699-0712

Designing and Implementing PMRI Learning Materials on Number for Grade 4th Students in Palembang
Ratu Ilma Indra Putri.. 0713-0722

A Framework for Understanding the Uses of the Internet for Teacher Professional Development
Sitti Maesuri Patahuddin.. 0723-0734

Students' Responses to the Realistic Mathematics Teaching Approach in Junior Secondary School in Indonesia
Turmdud... 0735-0754

Attitude of Student Teachers of Mathematics Education Towards The Integration of ICT in Mathematics Classroom
Tutuk Narfani and I Gusti Ngurah Darmawan............... 0755-0764

The Nature of Discourse in PMRI Classroom: Exploring the Notion of Average Wanty Widjajadi, Hongki Julie, and Hanna Desi S........ 0765-0772

The “P” in PMRI: Progress and Problems
Zulkardi... 0773-0780

STATISTICS

Generalized Extreme Value Disrtribution Model In Option Pricing
Abdurakhman.. 0781-0790

Procedure of Additive and Inovational Outlier Detection for Double Seasonal ARIMA Model
Alfonso Julianto Endhartono and Subartonoto.............. 0791-0802

Model for Occupational Mobility
Asis Kumar Chattopadhayay...................................... 0803-0822

The Hull-White One-Factor and Two-Factor Models in Approximating The Zero-Coupon Bond Prices
Bevina D. Handari, Irwanto, Ayodya R.H., and Novita M... 0823-0836

Cointegration Approach on Estimation Model of Export and Import Agricultural Product
Brodjol Sutito.. 0837-0844

Spline Estimator in Homoscedastic Multi-Response nonparametric Regression Model
Budi Lestari, I Nyoman Budiantara, Sony Sunaryo, and Muhammad Mashuri 0845-0854

Study on Least Squares Estimation and Its Properties in the GSTAR Model
Budi Nurani Ruchiana, H.F. Lopuhua, and Svetlana A. Borovkova 0855-0862

Value at Risk Calculation for Single Asset Returns Series Using Stable Distribution
Dedi Rosadi .. 0863-0870
On Creating Truncated Weibull Distribution Module in WinBUGS and Its Use Bayesian Frontier Function Modeling
Dedy Dwit Pratya, Nur Irwan, and Yuni Wulandari .. 0871-0884

Comparison Between ARIMA and ARAR Forecasting Method Applied for Quarterly Deaths Data in Australia
Dewi Anggraeni ... 0885-0896

The Reliability Monitoring Method for Wear Failure Mode
Erni D. Sumaryatno and Indrawati .. 0897-0904

The Permutation Test for Quantitative Trait Loci (QTL) Mapping
Farid M. Afendi and Dea Dyandra Putri ... 0905-0912

Monte Carlo Simulation Method with Control Variate for Indonesian Option Pricing under Arithmetic Average
Gunardi ... 0913-0920

Weighted Spline Estimator in Heteroscedastic Nonparametric Regression for Longitudinal Data
I Nyoman Budiantara, Budi Lestari, and Anna Ismailiyati 0921-0934

Fuzzy Regression Analysis with Symmetrical Fuzzy Dependent Variable
Iqbal Qoritsin and Subanar ... 0935-0950

Censored Data Modelling Using Bivariate Classical and Tobit Regression Analysis
Ismaini Zain, Dwiantono Agus Wido, and Is Anjarwati .. 0951-0958

Bivariate Binary Logistic Regression Modelling on the Economic Children Labor Force Participation
Ismaini Zain, Hiro Hendra Permana, and Siswadi ... 0959-0968

Effect of Misused Distribution and Correlation on Mixed Logit and Probit Models for Multivariate Binary Response
Jaksa Nugraha, Suryo Gurino, and Sri Haryantmi ... 0969-0978

Binary Response Nonparametric Regression Model and Its Application in University Graduation
Jerry Dwi Trijaya Purnomo and Suhatono .. 0979-0986

Nonparametric Conditional Density Estimation
Kartiko ... 0987-0992

Modeling Indonesian LQ45 Stock Market Index Volatility (Application of GARCH and Bayesian GARCH)
M. Arbi Haditya .. 0993-1000

Bivariate Attribute Control Charts Based on Log Linear Model
Muhammad Mashuri, and Wibawati .. 1001-1010

A Joint Econometric Model of Macroeconomic and Term Structure Dynamics for Indonesian Government Bond Yied Rates
Muhammad Syamsuddin, Lienda Nofiyanti, and Rina Rahmati 1011-1020

False Discovery Rate Control in Detecting QTL in Categorical Scale
Rahmat Hidayatullah and Farid Mochamad Afendi .. 1021-1034

Outlier Detection by Dffits for Robust Regression Modeling
Rokhana Dwi Bekti and Sutikno .. 1035-1040

Geographically Weighted Poisson Regression Model
Salman Notje Aselele and Purhadi ... 1041-1048

Assessing Gender Bias for Good Consumption Using Semiparametric Regression
Sri Haryantmi Kartiko ... 1049-1056

Comparison Between ARIMA, Transfer Function, and ASTAR Models for Forecasting Rainfall Data in Indonesia
Suhatono, Sutikno, B. W. Otok, and Setiasawan .. 1057-1068
Mean-VaR Portfolio Under CAPM with Lagged and non Constant Volatility
Sukono, Subanan, and Dedi Rosadi ... 1069-1078

Robust Decline Curve Analysis
Sutaworin Darwis, Budi Nurani Rachjana, and Asep Kurnia Permadi ... 1079-1086

Prediction of Monthly Rainfall Characteristics based on Climate Indices Using Multi Input Transfer Functions
Sutikno, B. W. Otok, Suhartono, Setiawan, and A.S. Endharta ... 1087-1096

On Choosing of Optimal Bandwidth for Fourier Series Estimator in Multiresponse Non Parametric Regression
Wahyu Wibowo, Agustini Tripena, I Nyoman Budiantara, and Ihsan ... 1097-1108

A Functional Central Limit Theorem for Residual Partial Sums Process of Heteroscedastic Spatial Linear Regression Model
Wayan Somayasa ... 1109-1118

Control Chart Variability of Non Parametric
Wibawati and Muhammad Masnuri ... 1119-1130

Application of Spatial Scan Statistics on Tuberculosis Hotspot Detection in Indonesia
Yekti Widyaningstih and Siti Nurrohmah ... 1131-1140

The Appropriate Weighted for Forecasting of MA(1) Process Based On Fuzzy Time Series
Zuhaimy Ismail, Muhammad Hisyam Lee, and Riswan Efendi ... 1141-1152

Weighted Fuzzy Time Series Model for Malaysian-Indonesian Stock Index Prediction
Zuhaimy Ismail, Muhammad Hisyam Lee, Riswan Efendi, Suhartono, and Adilina Abdul Samad 1153-1170
FEEDBACK ZERO-SUM LINEAR QUADRATIC
DYNAMIC GAME FOR DESCRIPTOR SYSTEM

SALMAH

Abstract. In this paper we present necessary and sufficient conditions for existence of Nash equilibrium of linear quadratic continuous zero-sum two player dynamic games for index one descriptor system. We assume that we give a linear feedback to the game. The connection of the game solution with solution of N couple Riccati equation will be studied.

Key words and Phrases : Nash equilibrium, feedback, zero-sum, linear quadratic dynamic game, descriptor system, index one

1. Introduction

In the last decade, there has been increasing interest to study the problem in economics with dynamic game approach. Particularly, in area of environmental economics and macro-economics policy coordination, it is natural to model the problems as dynamic game[1], [7] and [24]. With this approach, the effect of the execution control strategy of the game to dynamic of the model can be analyzed([2], [5], [8], [9], and [10]). In applications one often encounters systems described by differential equations system subject to algebraic constraints. The descriptor systems, gives a realistic model for this systems ([3], [4], [11], [12], [13], [14], [15] and [16]).

In policy coordination problems, questions arise, are policies coordinated and which information do the parties have. One scenario is feedback Nash. According this, the parties can react to each other’s policies, therefore it has large economic relevance.

In this paper we will consider a linear feedback zero-sum dynamic game in which the player satisfy a linear descriptor system and minimize quadratic objective function. For finite horizon problem, solution of generalized Riccati differential equation is studied. If the planning horizon is extended to infinity the differential Riccati equation will become an algebraic Riccati equation. Particular attention will be given to computational aspect of the problem.

The purpose of this paper is to extend the investigation by Salmah et.al. in [18], [19], [20], [21], [22], [23] and Engwerda et.al in [16] where the game is non-zero-sum and the scenario for the game is open-loop. In this paper the non-zero-sum game with include linear feedback strategy will be applied to zero-sum game with feedback strategy.

Until recently, except for the work of the writer and colleague, a study of
differential game for descriptor system is lacking. Such first step studies have been carried out with assumption that the game is open loop. To study necessary and sufficient condition for existence of Nash solution of the game Hamiltonian method was used as in [18]. To find the optimal solution of the dynamic game for descriptor system with a finite planning horizon, the problem is related to the solution of differential Riccati equation. The differential Riccati equation is a generalization and combination of differential Riccati equation for linear quadratic dynamic game with 'ordinary system' and differential Riccati equation for linear quadratic optimal control for descriptor system in [19] and [20]. The work of linear quadratic dynamic game for descriptor system with infinite horizon case and studied algebraic Riccati equation for the game is in [21]. A simplifying assumption can be made, namely descriptor system with index one [6].

In those studies, the assumption for the game is open-loop. Open-loop game is a benchmark to study more complicated game. This strategy is based on assumption that the parties act non-cooperatively and the only information they have is the present state and the model structure. In this scenario the parties can not react each other. Therefore its economic relevance is limited.

In this paper we will study the game that including feedback Nash, in which the parties can react to each other’s policies. This scenario has large economic relevance. The result from non-zero-sum game with linear feedback strategy will be applied to zero-sum game with linear feedback strategy.

2. Preliminaries

Linear quadratic dynamic game can be considered as a combination of linear quadratic optimal control and game theory. In linear quadratic dynamic game, N parties (called players) try to minimize their individual quadratic objective function and give control to 'ordinary' state space system.

Although it has many applications, ordinary linear quadratic optimal control, often does not provide a physical meaning in controlling, because the state variable does not corresponds with variable that we want to control. Descriptor systems have great capacity for system modeling because they can preserve structure of physical system and can include nondynamic mode and impulsive mode. Therefore they have a potential applicability for a wide class of systems. Descriptor system described by a set of ordinary equations subject to some algebraic constraints.

In linear quadratic dynamic game for descriptor system we consider the problem of two players who like to optimize their quadratic cost function performance depending both on the state and control variables. The system is described by a set of differential and algebraic equations which is called a descriptor system. The game with two players can be expressed mathematically, that the players give control to descriptor system

\[E\dot{x} = Ax + B_1 u_1 + B_2 u_2, \quad E x(0) = E x_0. \]

with \(E \in \mathbb{R}^{n \times n}, A \in \mathbb{R}^{n \times n}, B_1 \in \mathbb{R}^{n \times m_1}, B_2 \in \mathbb{R}^{n \times m_2}, \) \(x(t) \) descriptor vector n dimension. While \(u_i(t), i=1, ..., n \) are control vector \(m_i \) dimension which is done by i-th player, \(i=1, ..., n \). Matrix E generally singular with rank \(E = r < n \). The players minimizing objective functions in the Nash sense of the form
\[J_i(u_i, u_2) = \frac{1}{2} x(T)^T E_i^T K_{fi} Ex(T) + \frac{1}{2} \int_0^T \left(x(t)^T Q_i x(t) + u_i^T(t) R_{fi} u_i(t) + u_2^T R_{fi} u_2(t) \right) dt, \]

\(i = 1, 2 \) \hspace{1cm} (2)

with all matrices symmetric. Furthermore \(Q_i \) and \(K_{fi} \) semi positive definite and \(R_{fi} \) positive definite.

In this paper we will consider a linear feedback strategy of the linear quadratic dynamic game for descriptor system. Below is definition of feedback strategy.

Definition 2.1. The set of control actions \(F^* = (F_1^*, F_2^*) \) is called a feedback Nash equilibrium if for all \(i = 1, 2 \) \(J_i(x_0, F_i^*) \leq J_i(x_0, F_i^*(\alpha)) \) for every consistent \(x_0 \) and for each matrix \(\alpha \) such that \(F_i^*(\alpha) \in F_{fit}^* \).

Under some assumptions such as regularity, impulse controllability and index one we will solve the game, both for finite and in finite planning horizon. To find solution of linear quadratic dynamic game for descriptor system with finite horizon case, a differential Riccati will be derived. The relationship between the existence of solution of differential Riccati equation and solution of the game will be considered. For infinite horizon case algebraic Riccati equation that associated with the game will be studied.

Now we will initiate the zero-sum game. Consider the problem that the players satisfy (1). The zero-sum game is a game with the player one minimizing objective functions in the Nash sense of the form

\[J_1(u_1, u_2) = \frac{1}{2} x(T)^T E_i^T K_{fi} Ex(T) + \frac{1}{2} \int_0^T \left(x(t)^T Q_i x(t) + u_1^T(t) R_{fi} u_1(t) - u_2^T(t) R_{fi} u_2(t) \right) dt, \]

\(i = 1, 2 \) \hspace{1cm} (3)

For the player two, the opposite objective function

\[J_2(u_1, u_2) = -J_1(u_1, u_2) \]

\(i = 1, 2 \) \hspace{1cm} (4)

with all matrices symmetric. Furthermore \(Q_i \) and \(K_{fi} \) semi positive definite and \(R_{fi} \) positive definite.

Assumption which is needed will be given.

Assumption 2.1. Descriptor system (1) regular, impulse controllable and finite dynamic stabilizable which satisfy

\(i) \quad |sE - A| \neq 0, \forall s \neq 0, \) except for a finite number of \(s \in \mathbb{R}, \)

\(ii) \quad \text{Im} E + \text{Im} A(\ker E) + \text{Im} \left(B_1 \mid B_2 \mid \cdots \mid B_N \right) = \mathbb{R}^n, \)

\(iii) \quad \text{rank} \left(sE - A \mid B_1 \mid B_2 \mid \cdots \mid B_N \right) = n \quad \forall s, \text{Re}[s] \geq 0. \)
Recall from [12] for optimal control problem with descriptor system we will consider the descriptor system
\[
\begin{pmatrix}
E & 0 & 0 \\
0 & E^T & 0 \\
0 & 0 & 0
\end{pmatrix}
\begin{pmatrix}
\dot{x}(t) \\
\dot{y}(t) \\
\dot{u}(t)
\end{pmatrix} =
\begin{pmatrix}
A & 0 & B \\
-\tilde{Q} & -A^T & -BR^1B^T \\
BR^1B^T & B^T & R
\end{pmatrix}
\begin{pmatrix}
x(t) \\
y(t) \\
u(t)
\end{pmatrix},
\]
with \(\gamma \) is Lagrange multiplier in Hamiltonian function. For optimal control problem with descriptor system we need the following assumption.

Assumption 2.2: The Descriptor system is regular and impulse free i.e
\[
\text{Im} \tilde{E} + \text{Im} \tilde{A} (\ker \tilde{E}) = 9k^{2n+m},
\]
where
\[
\tilde{E} =
\begin{pmatrix}
E & 0 & 0 \\
0 & E^T & 0 \\
0 & 0 & 0
\end{pmatrix},
\tilde{A} =
\begin{pmatrix}
A & 0 & B \\
-\tilde{Q} & -A^T & -BR^1B^T \\
BR^1B^T & B^T & R
\end{pmatrix}
\]

If Assumption 2.2 is satisfied then the controlled system will be regular and impulse controllable.

3. The Finite Planning Horizon

In this section we consider the zero-sum game that the player give control to system (1) and the playery to minimize in the Nash sense (3) and (4) under the assumption that \(T \) is finite. For that purpose we first need to consider the non-zero-sum game in which the players give control to system (1) and try to minimize (2). For non-zero-sum game with linear feedback strategy the differential Riccati equation
\[
E^T \dot{K}_1 + (A - S_2K_2)\dot{K}_1 + L_1(A - S_2K_2 - L_2S_2K_2) - K_2S_2K_2 + Q_1 = 0,
\]
\[
E^T \dot{K}_2 + (A - S_1K_1)\dot{K}_2 + L_2(A - S_1K_1 - L_2S_2K_2 - K_1S_2K_1) + Q_2 = 0,
\]
with
\[
L_1E = E^T K_1, \quad L_2E = E^T K_2,
\]
\[
S_1 = B_1R_{11}^{-1}B_1^T, \quad S_2 = B_2R_{21}^{-1}B_2^T, \quad S_{21} = B_2R_{21}^{-1}R_{12}R_{12}^{-1}B_2^T, \quad S_{12} = B_1R_{11}^{-1}R_{21}R_{21}^{-1}B_1^T,
\]
play a crucial role. Theorem below give relationship between solution of differential Riccati equation (5) and solution of non-zero-sum linear quadratic game with descriptor system that include feedback strategy.

Theorem 3.1. The two player non-zero-sum linear quadratic differential game with descriptor system (1), (2) has, for every consistent initial state, a linear feedback Nash equilibrium if and only if the set of differential Riccati equation (5) has a set of symmetric solutions \(K_1, K_2, L_1, L_2 \) on \([0,T]\).
Proof: Assume \(u_i^*(t) = F_i^*(t)x(t) \), \(t \in [0, T] \), \(i = 1, 2 \), is a set of linear feedback equilibrium actions. Then according to the definition of feedback equilibrium, the following linear quadratic regulator problem has a solution \(u_i^*(t) = F_i^*(t)x(t) \), for all \(x_0 \) subject to the system

\[
Ex(t) = (A + B_1F_1^*(t))\dot{x}(t) + B_1u_1(t), \quad Ex(0) = E\tilde{x}_0.
\]

According to [12], this regulator problem has a solution if the Riccati differential equation

\[
E^T\dot{K}_1 = (A - B_2F_2^*(t))^TK_1(t) + L_1(t)(A + B_2F_2^*(t)) - L_1(t)SK_1(t) = (Q_1 + F_2^*(t)R_2F_2^*(t))
\]

has a symmetric solution \(K_1(.) \) on \([0, T]\). Moreover, the solution for this optimization problem is given by

\[
u_i^*(t) = -R_1^{-1}B_1^TK_1(t)x(t).
\]

For the second player the proof is analog.

Now we will proof the converse part of the theorem. Assume we choose the feedback strategy \(F_1 = -R_1^{-1}B_1^TK_1(t)x(t) \), \(F_2 = -R_2^{-1}B_2^TK_2(t)x(t) \), with \(K_1(t) \) and \(K_2(t) \) is solution of differential Riccati equation (3.1). Define

\[
\gamma_1(t) = K_1(t)x(t), \quad \gamma_2(t) = K_2(t)x(t).
\]

Define the equations to \(t \) we have

\[
E^T\dot{\gamma}_1(t) = E^T\dot{K}_1(t)x(t) + E^TK_1(t)\dot{x}(t),
\]

\[
E^T\dot{\gamma}_2(t) = E^T\dot{K}_2(t)x(t) + E^TK_2(t)\dot{x}(t).
\]

Based on equation of the system (2.1) we have

\[
Ex(t) = Ax(t) - B_1R_1^{-1}B_1^TK_1(t)x(t) - B_2R_2^{-1}B_2^TK_2(t)x(t),
\]

or

\[
Ex(t) = Ax(t) - B_1R_1^{-1}B_1^TK_1(t)x(t) - B_2R_2^{-1}B_2^TK_2(t)x(t).
\]

Based on Riccati differential equation (3.1) we have

\[
E^T\dot{K}_1 = -(A - S_2K_2)^TK_1 - L_1(A - S_2K_2) - Q_1 + L_1S_1K_1 + K_2S_{11}K_2,
\]

\[
E^T\dot{K}_2 = -(A - S_1K_1)^TK_2 - L_2(A - S_1K_1) - Q_2 + L_2S_2K_2 + K_1S_{12}K_1.
\]

Therefore we have

\[
E^T\dot{\gamma}_1(t) = -(A - S_2K_2(t))\gamma_2(t) - Q_1\gamma_1(t) + K_2(t)S_{11}K_2(t)x(t).
\]

Based on [23] and the definition of feedback Nash equilibrium it complete the proof.

Applying Theorem 3.1 to zero-sum game descriptor system we will find the following theorem.

Theorem 3.2. The two player zero-sum linear quadratic differential game with descriptor system (1), (3) and (4) has, for every constant initial state, a linear feedback Nash equilibrium if and only if the set of differential Riccati equation
\[E^T \dot{K} + A^T K + LA - L(S_1 - S_2)K + Q = 0 \]

has a set of solutions \(K, L \) on \([0, T] \).

Proof: According to Theorem 3.1, the corresponding generalized differential Riccati equation will have form

\[E^T \dot{K}_1 + (A - S_2 K_2)^T K_1 + L_1 (A - S_2 K_2) + Q - L_1 S_2 K_2 - K_1 S_1 K_2 = 0, \]

\[E^T \dot{K}_2 + (A - S_1 K_1)^T K_2 + L_2 (A - S_1 K_1) - Q - L_2 S_1 K_1 - K_2 S_2 K_1 = 0 \]

Adding (7) and (8) give the following differential equation

\[E^T (\dot{K}_1 + \dot{K}_2) + (A - S_1 K_1 - S_2 K_2)^T (K_1 + K_2) + (L_1 + L_2) (A - S_1 K_1 - S_2 K_2) = 0 \]

Obviously \((K_1 + K_2)(.) = 0\) and \((L_1 + L_2) (.) = 0\) satisfy this equation. Since the solution of this differential equation is unique we have that \(K_1 = -K_2 \) and \(L_1 = -L_2 \). Substitute this into (7) we get (6).

4. The Infinite Planning Horizon

In this section we consider the zero-sum game that the player satisfy (1) and the first player try to minimize the cost function

\[J_1(u_1, u_2) = \frac{1}{2} \int_0^T \left(x(t)^T Q x(t) + u_1^T(t) R_1 u_1(t) + u_2^T(t) R_2 u_2(t) \right) dt, \]

(9) with all matrices symmetric. Furthermore \(Q_1 \) and \(K_{1T} \) semi positive definite and \(R_{1y} \) positive definite. (9) with all matrices symmetric. Furthermore \(Q_1 \) and \(K_{1y} \) semi positive definite and \(R_{1y} \) positive definite. For that purpose we first need to consider the non-zero-sum game in which the player give control to system (1) and they try to minimize the cost function

\[J_1(u_1, u_2) = \frac{1}{2} \int_0^T \left(x(t)^T Q x(t) + u_1^T(t) R_1 u_1(t) + u_2^T(t) R_2 u_2(t) \right) dt, \]

(11) In infinite planning horizon case it can be prove that the differential Riccati equation become an algebraic Riccati equation, the solution become constant, and the differential term become zero. Therefore now we consider the algebraic Riccati equation

\[(A - S_2 K_2)^T K_1 + L_1 (A - S_2 K_2) - L_1 S_2 K_2 - K_1 S_1 K_2 + Q_1 = 0, \]

\[(A - S_1 K_1)^T K_2 + L_2 (A - S_1 K_1) - L_2 S_1 K_2 - K_2 S_2 K_1 + Q_2 = 0, \]

\[L_1 E = E^T K_1, \]

\[L_2 E = E^T K_2, \]

(12)
with \(S_1 = B_1R_1^{-1}B_1^T \), \(S_2 = B_2R_2^{-1}B_2^T \), \(S_{12} = B_1R_1^{-1}R_{12}R_2^{-1}B_2^T \).

For non-zero-sum infinite horizon case we have the following theorem.

Theorem 4.1. The two player non-zero-sum linear quadratic differential game with descriptor system (1), (10) has, for every consistent initial state, a linear feedback Nash equilibrium if and only if the set of algebraic Riccati equation (12) has a set of solutions \(K_1, K_2, L_1, L_2 \) on \([0,T]\).

Apply the result of Theorem 4.1 to zero-sum infinite horizon game we get the following theorem.

Theorem 4.2. The two player linear quadratic differential game with descriptor system (1), (11) has, for every consistent initial state, a linear feedback Nash equilibrium if and only if the set of differential Riccati equation

\[
\dot{K} + LA - L(S_1 - S_2)K + Q = 0
\]

with \(LE = E^T K \), has a set of solutions \(K, L \) on \([0,T]\).

Proof: According to Theorem 4.1, the corresponding generalized differential Riccati equation will have form

\[
(A - S_1K_1 - S_2K_2)K_1 + L_1(A - S_1K_1) + Q - L_1S_1K_1 - K_1S_1K_2 = 0,
\]

\[
(A - S_1K_1 - S_2K_2)K_2 + L_2(A - S_1K_1) - Q - L_2S_1K_1 - K_2S_1K_2 = 0
\]

Adding (14) and (15) give the following algebraic equation

\[
(A - S_1K_1 - S_2K_2)^T(K_1 + K_2) + (L_1 + L_2)(A - S_1K_1 - S_2K_2) = 0
\]

Obviously \((K_1 + K_2)v = 0\) and \((L_1 + L_2)v = 0\) satisfy this equation. Since the solution of this differential equation is unique we have that \(K_1 = -K_2 \) and \(L_1 = -L_2 \). Substitute this into (14) we get (13).

Based on [12] we can find solution of the algebraic Riccati equation by defining generalized eigenvalue problem that need further investigation.

3. Concluding Remarks

This paper consider 2 player zero-sum linear quadratic dynamic game with descriptor systems for finite horizon and infinite horizon case with linear feedback Nash equilibrium. The paper consider 2 couple Riccati-type differential equation for finite horizon case and algebraic Riccati equation for infinite horizon case. We derive theorem that consider relationship between solution of the Riccati equation and solution of the game.
References

SALMAH: Department of Mathematics, Gadjah Mada University, Yogyakarta, Indonesia.
E-mail: salmah@ugm.ac.id